贝叶斯定理

贝叶斯定理英语:Bayes' theorem)是概率论中的一个定理,它跟随机变量条件概率以及边缘概率分布有关。在有些关于概率的解释中,贝叶斯定理(贝叶斯公式)能够告知我们如何利用新证据修改已有的看法。這個名稱來自於托马斯·贝叶斯

通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A(发生)的条件下的概率是不一样的。然而,这两者是有确定的关系的,贝叶斯定理就是这种关系的陈述。贝叶斯公式的一个用途在于通过已知的三个概率函数推出第四个。

作为一个普遍的原理,贝叶斯定理对于所有概率的解释是有效的。然而,频率主义者和贝叶斯主义者对于“在应用中,某个随机事件的概率该如何被赋值?”这个问题有着不同的看法:频率主义者根据随机事件发生的频率,或者总体样本裡面的发生的个数来赋值概率;贝叶斯主义者则根据未知的命题来赋值概率。这样的理念导致贝叶斯主义者有更多的机会使用贝叶斯定理。

其他语言
aragonés: Teorema de Bayes
العربية: مبرهنة بايز
asturianu: Teorema de Bayes
беларуская: Тэарэма Баеса
беларуская (тарашкевіца)‎: Тэарэма Баеса
български: Теорема на Бейс
čeština: Bayesova věta
Cymraeg: Theorem Bayes
Ελληνικά: Θεώρημα Μπέυζ
فارسی: قضیه بیز
Gaeilge: Teoirim Bayes
עברית: חוק בייס
magyar: Bayes-tétel
Bahasa Indonesia: Teorema Bayes
íslenska: Formúla Bayes
한국어: 베이즈 정리
lietuvių: Bajeso teorema
Nederlands: Theorema van Bayes
Piemontèis: Fórmola ëd Bayes
português: Teorema de Bayes
Simple English: Bayes' theorem
српски / srpski: Бајесова теорема
Basa Sunda: Téoréma Bayes
svenska: Bayes sats
Türkçe: Bayes teoremi
українська: Теорема Баєса
Tiếng Việt: Định lý Bayes