紧致开拓扑

数学中,紧致开拓扑是定义在两个拓扑空间之间的所有连续映射集合上的一种拓扑。紧致开拓扑是函数空间上的常用拓扑之一,在同伦理论和泛函分析中有应用。

定义

XY 为两个拓扑空间,令C(X, Y) 为所有从X 射到 Y 上的连续映射的集合。对于X 中的一个紧集KY 中的一个开集U,设V(K, U) 为集合 C(X, Y)中所有使得f(K)属于 U映射的集合。所有的V(K, U) 构成紧致开拓扑的一个 子基(但一般不构成C(X, Y)上的一个 拓扑基)。