無效證明

數學裡,有著許多明顯矛盾的虛假證明存在。即使其證明是有缺陷的,其錯誤-通常是經過設計的-卻常是較難抓摸的。這些謬誤一般都儘止於好奇而已,但可以被使用顯示嚴謹在數學中的重要性。

大多數此類的證明都仰賴著同種錯誤的變形。此一錯誤為採一非單射函數,以觀察對某些,會有,來(錯誤地)做出的結論。零除數是此類錯誤的一特例;為將映射至的函數,而其錯誤的一步是起於將的等式做成的結論。相似地,下面證明了的句子也是以函數的同一種錯誤造成的。其錯誤的一步始於有某個會使得的一正確申論,然後做出了的一錯誤結論。

算术例子

證明1是最大的正整數

  • 假設最大的正整數不是,而是,有
  • 為正的,所以由得到
  • 但是還是正整數,可是沒有任何正整數比大,矛盾;
  • 所以最大的正整數是1

Q.E.D.

此一證明是無效的,因為最大的正整數不存在,因此不能如此假設。

證明1等於-1

  • 由一等式開始
  • 將兩邊轉成假分數
  • 將兩邊開方
  • 其會等於
  • 兩邊同乘以來消去分數
  • 但任一數的開方之平方會給出原本的數來,故

Q.E.D.

此一證明是無效的,因為負數的開方不是实数, 1 1 = 1 1 {\displaystyle {\frac {\sqrt {1}}{\sqrt {-1}}}={\frac {\sqrt {-1}}{\sqrt {1}}}} 1 1 = i {\displaystyle {\frac {\sqrt {1}}{\sqrt {-1}}}=-i} 1 1 = i {\displaystyle {\frac {\sqrt {-1}}{\sqrt {1}}}=i} )。

證明1等於2

1.令,且

2.將兩邊乘以a

3.將兩邊減掉

4.將兩邊因式分解

5.將兩邊除以

6.因為因此

7.簡化

8.將兩邊除以b

Q.E.D.

這個證明的錯誤點在於第五步,由於等於,而除以零是無效的。

證明4等於5

  • 由一等式開始
  • 將等式兩邊以稍微不同但相等的方式表示
  • 將兩邊做因式分解
  • 將兩邊加上相同的數
  • 將兩邊再做一次因式分解
  • 將兩邊開方
  • 消去相同的項

Q.E.D.

那一證明內的錯誤在於不表示的這一事實。到此之前的算術都是正確的,而事實上,。需注意的是,若將4減去,會得到。若再平方的話,則會得到正的。其下一個邏輯的數學步驟為取兩邊的平方。若這樣做的話,則將會看見會等於。原始的式子事實上是會導致一個正確的等式的(若此一問題是以此一純粹的方式運算的話)。

證明1+1=0

Q.E.D.

此證明的錯誤在於只有在a與b不皆為負數才成立,並不等於

證明0=1

首先,設定一個無窮級數。

因為,因此:

拆括號之後在於不同的地方加上括號:

,因此:

Q.E.D.

這個證明的錯誤在於,無窮等比級數在公比的絕對值大於等於一的情況下,將括號插入無窮級數求無窮和是沒有意義的,因為這樣的無窮等比級數和發散。因此這類條件不適用於格蘭迪級數

證明0/0等於0

首先,我們知道:

由於

因此

因此

Q.E.D.

這個證明的錯誤在於,成立的前提有

證明任意兩數都是相等的


和立方差立方公式可知:

由於

代入,可得:

因此:

代入,可得:

Q.E.D.

这个证明的错误在于:

1、在以上的假设下,可得,所以并不是独立的;

2、在复数域中,由得不出。在此证明中,由得出是错误的。