有限域

数学中,有限域英语:finite field)或伽罗瓦域英语:Galois field,为纪念埃瓦里斯特·伽罗瓦命名)是包含有限个元素。与其他域一样,有限域是进行加减乘除运算都有定义并且满足特定规则的集合。有限域最常见的例子是当 p 为素数时,整数对 p 取模。

有限域的元素个数称为它的

有限域在许多数学和计算机科学领域的基础,包括数论代数几何伽羅瓦理論有限幾何學密码学编码理论

定理

  • 有限域的阶(有限域中元素的个数)是一个素数的幂。
  • 对于每个素数p和每个正整数n在同构的意义下存在惟一的阶的有限域,并且所有元素都是方程 的根,该域的特征p
  • 有限域的乘法群是循环群。即若F是有限群,则存在使得
  • 有限域是 完美域,即它的任何代数扩张一定是可分扩张
  • 有限域的有限扩张一定是伽罗瓦扩张,并且对应的伽罗瓦群循环群
其他语言
العربية: حقل منته
беларуская: Канечнае поле
български: Крайно поле
català: Cos finit
English: Finite field
español: Cuerpo finito
français: Corps fini
עברית: שדה סופי
italiano: Campo finito
日本語: 有限体
한국어: 유한체
português: Corpo finito
română: Corp finit
Simple English: Galois field
српски / srpski: Коначно поље
svenska: Ändlig kropp
Türkçe: Sonlu alan
українська: Поле Галуа
粵語: 有限體