作用量

物理學裏,作用量(英语:action)是一個很特別、很抽象的 物理量。它表示著一個 動力物理系統內在的演化趨向。雖然與 微分方程式方法大不相同,作用量也可以被用來分析物理系統的運動,所得到的答案是相同的。只需要設定系統在兩個點的狀態,初始狀態與最終狀態,然後,經過求解作用量的 平穩值,就可以得到系統在兩個點之間每個點的狀態。

歷史

皮埃爾·德·費馬於1662年發表了 費馬原理。這原理闡明:光傳播的正確路徑,所需的時間必定是 極值。這原理在物理學界造成了很大的震撼。不同於 牛頓運動定律的機械性,現今,一個物理系統的運動擁有了展望與目標。

戈特弗里德·萊布尼茨不同意費馬的理論。他認為光應該選擇最容易傳播的路徑。他於1682年發表了他的理論:光傳播的正確路徑應該是阻礙最小的路徑;更精確地說,阻礙與徑長的乘積是最小值的路徑。這理論有一個難題,如果要符合實驗的結果,玻璃的阻礙必須小於空氣的阻礙;但是,玻璃的密度大於空氣,應該玻璃的阻礙會大於空氣的阻礙。萊布尼茨為此提供了一個令人百思的辯解。較大的阻礙使得光較不容易 擴散;因此,光被約束在一個很窄的路徑內。假若,河道變窄,水的流速會增加;同樣地,光的路徑變窄,所以光的速度變快了。

1744年, 皮埃爾·莫佩爾蒂在一篇論文《The agreement between the different laws of Nature that had, until now,seemed incompatiable》中,發表了 最小作用量原理:光選擇的傳播路徑,作用量最小。他定義作用量為移動速度與移動距離的乘積。用這原理,他證明了費馬原理:光傳播的正確路徑,所需的時間是 極值;他也計算出光在 反射與同 介質傳播時的正確路徑。1747年,莫佩爾蒂在另一篇論文《On the laws of motion and of rest》中,應用這原理於 碰撞,正確地分析了彈性碰撞與非弹性碰撞;這兩種碰撞不再需要用不同的理論來解釋。

萊昂哈德·歐拉在同年發表了一篇論文《Method for finding curves having a minimal or maximal property or solutions to isoperimetric problems in the broadest accepted sense》 ;其中,他表明物體的運動遵守某種物理量極值定律,而這物理量是。應用這理論,歐拉成功的計算出,當粒子受到 連心力作用時,正確的拋射體運動。

在此以後,許多物理學家,包括 約瑟夫·拉格朗日威廉·哈密頓理查德·費曼等等,對於作用量都有很不同的見解。這些見解對於物理學的發展貢獻甚多。

其他语言