Không gian Hilbert

Trong toán học, không gian Hilbert (Hilbert Space) là một dạng tổng quát hóa của không gian Euclid mà không bị giới hạn về vấn đề hữu hạn chiều. Đó là một không giantích vô hướng, nghĩa là trong đó có khái niệm về khoảng cáchgóc (đặc biệt là khái niệm trực giao hay vuông góc). Hơn nữa, nó thỏa mãn một yêu cầu nữa là tính đầy đủ để chắc chắn rằng giới hạn là tồn tại khi cần, làm các định nghĩa khác nhau trong tính toán vi tích phân dễ dàng hơn. Các không gian Hilbert cho phép các trực giác hình học có thể được áp dụng vào một số không gian hàm vô hạn chiều. Chúng cung cấp một khung để hệ thống hóa và tổng quát hóa khái niệm chuỗi Fourier theo một hệ bất kì của các hàm số trực giao và của phép biến đổi Fourier, là những khái niệm trung tâm của giải tích hàm. Không gian Hilbert đóng vai trò quan trọng trong việc hình thức hóa toán học cơ học lượng tử.

Giới thiệu

Các không gian Hilbert được đặt tên theo David Hilbert, người nghiên cứu chúng trong ngữ nghĩa của phương trình tích phân. Nguyên thủy là John von Neumann đã gọi "der abstrakte Hilbertsche Raum" trong công trình nổi tiếng của ông về các toán tử Hermitian không bị chặn vào năm 1929. Von Neumann có lẽ là nhà toán học nhận ra một cách rõ ràng nhất tầm quan trọng của khái niệm này trong công trình khai phá của ông về nền tảng của cơ học lượng tử bắt đầu với Hilbert và Lothar (Wolfgang) Nordheim và tiếp tục với Eugene Wigner. Cái tên "không gian Hilbert" nhanh chóng được dùng theo bởi những người khác, ví dụ như Hermann Weyl trong cuốn sách của ông với tựa đề Lý thuyết nhóm và vật lý lượng tử xuất bản năm 1931 (tiếng Anh là ISBN 0486602699).

Những phần tử của một không gian Hilbert trừu tượng đôi khi được gọi là "vectơ". Trong các ứng dụng, chúng thông thường là các chuỗi của các số phức hay của các hàm số. Trong vật lý lượng tử chẳng hạn, một hệ vật lý được miêu tả bởi một không gian Hilbert phức chứa các "hàm sóng" biểu diễn tất cả các trạng thái có thể của hệ thống. Xem sự hình thức hóa toán học của cơ học lượng tử để thêm chi tiết. Không gian Hilbert của các sóng phẳng và các trạng thái biên thường được sử dụng trong cơ học lượng tử được biết chính thức hơn dưới tên rigged Hilbert space.

En otros idiomas
Afrikaans: Hilbert-ruimte
العربية: فضاء هيلبرت
azərbaycanca: Hilbert fəzası
dansk: Hilbertrum
Deutsch: Hilbertraum
Ελληνικά: Χώρος Χίλμπερτ
English: Hilbert space
Esperanto: Hilberta spaco
lietuvių: Hilberto erdvė
magyar: Hilbert-tér
Nederlands: Hilbertruimte
norsk: Hilbertrom
norsk nynorsk: Hilbertrom
oʻzbekcha/ўзбекча: Gilbert fazosi
پنجابی: ہلبرٹ سپیس
português: Espaço de Hilbert
română: Spațiu Hilbert
Simple English: Hilbert space
slovenčina: Hilbertov priestor
slovenščina: Hilbertov prostor
српски / srpski: Хилбертов простор
srpskohrvatski / српскохрватски: Hilbertov prostor
svenska: Hilbertrum
Türkçe: Hilbert uzayı
粵語: 囂拔空間