Диференціальні рівняння

Візуалізація повітряного потоку з рівняння Нав'є-Стокса
Візуалізація теплообміну у корпусі насоса, отримана шляхом розв'язування рівняння теплопровідності

Диференціа́льні рівня́ння — рівняння, що встановлює залежність між незалежними змінними, числами (параметрами), невідомими функціями та їх похідними. Невідома функція може бути як скалярною, так і векторною.

Такі залежності віднаходяться в різних областях знань: у механіці, фізиці, хімії, біології, економіці та ін. Диференціальні рівняння широко використовуються на практиці, зокрема для опису перехідних процесів, коливань, теплопровідності, деформації балок і пластин, поширення електричного струму у провіднику тощо.

Диференціальні рівняння або теорія диференціальних рівнянь — розділ математики, який розглядає теорію та способи розв'язування диференціальних рівнянь.

Основні поняття і визначення

У випадку одного аргументу диференціальне рівняння називається звичайним; у випадку декількох аргументів — диференціальним рівнянням з частинними похідними. Складнішими є інтегро-диференціальні рівняння.

Порядком диференціального рівняння називається найвищий порядок похідної, що входить у рівняння.

Степенем диференціального рівняння називається найвищий степінь, до якого піднесено похідну найбільшого порядку, що входить у рівняння.

Розв'язком диференційного рівняння порядку n називається функція, що має похідні, до n-ного порядку включно на деякому інтервалі, підставлення якої у рівняння перетворює його у тотожність. Якщо рівняння має розв'язок, то не один, а нескінченну множину; розв'язок може залежати не лише від аргументу, але також від однієї або декількох довільних сталих чи функцій. Якщо розв'язок рівняння отримано у формі неявної функції, то його називають інтегралом 
рівняння.

Початковими умовами або граничними умовами називаються додаткові умови, що накладаються на функцію при розв'язку конкретної задачі, що приводить до диференціального рівняння. За цих умов розв'язок може виявитись єдиним. Розв'язок рівняння, що залежить від довільних сталих, кількість яких дорівнює порядку рівняння і які можуть бути підібраними так, щоб задовольнити будь-яким початковим та граничним умовам, що допускають єдиний розв'язок, називається загальним розв'язком. Частинним розв'язком диференціального рівняння називається будь-який розв'язок, що може бути отриманий із загального при визначених числових значеннях довільних сталих. Довільні сталі, що входять в загальний розв'язок, визначаються з початкових або граничних умов.

Диференціальне рівняння називається інтегровним в квадратурах, якщо задачу знаходження усіх розв'язків можна звести до обчислення скінченного числа інтегралів від відомих функцій і простих алгебраїчних операцій. Через те, що багато рівнянь не можуть бути виражені через прості функції, тому деякі, рішення, що часто зустрічаються в таких задачах, отримали власні назви, були досліджені їх значення і взаємозв'язок, і тепер вони входять у число спеціальних функцій.

Спочатку диференціальні рівняння виникли із задач механіки, в яких брали участь координати тіл, їхні швидкості та прискорення, розглянуті як функції від часу, пізніше вони знайшли застосування практично в усіх розділах фізики - такі основні для своїх областей рівняння як рівняння Максвелла в електродинаміці, рівняння Ейнштейна у загальній теорії відносності та рівняння Шредінгера у квантовій механіці є диференціальними. Багато моделей з інших наук, таких як біологія, хімія і економіка також описуються різноманітними диференціальними рівняннями.

Для багатьох з цих рівнянь, в тому числі практично важливих, наприклад, рівняння Нав'є-Стокса, допоки що не знайдено розв'язку в загальному вигляді. Проте в реальних задачах за допомогою чисельних методів можна знайти їх рішення з будь-якою необхідною точністю.

інші мови
беларуская (тарашкевіца)‎: Дыфэрэнцыйнае раўнаньне
贛語: 微分方程
Bahasa Indonesia: Persamaan diferensial
日本語: 微分方程式
한국어: 미분방정식
Bahasa Melayu: Persamaan pembezaan
norsk nynorsk: Differensiallikning
srpskohrvatski / српскохрватски: Diferencijalna jednačina
Simple English: Differential equation
slovenščina: Diferencialna enačba
oʻzbekcha/ўзбекча: Differensial tenglama
Tiếng Việt: Phương trình vi phân
中文: 微分方程
Bân-lâm-gú: Bî-hun hong-têng-sek
粵語: 微分方程