การหลอมนิวเคลียส

เส้นโค้ง พลังงานยึดเหนี่ยวนิวเคลียส, นิวคลีออน (หมายถึงองค์ประกอบของนิวเคลียส หมายถึงโปรตอนหรือนิวตรอน) ที่มีมวลสูงถึง Iron-56 โดยทั่วไปจะปลดปล่อยพลังงานออกมา ส่วนพวกที่หนักกว่านั้นโดยทั่วไปจะดูดซับพลังงาน
ดวงอาทิตย์จะผลิตพลังงานออกมาโดยการหลอมนิวเคลียสของไฮโดรเจนจนกลายเป็นฮีเลียม ในแกนกลางของมัน ดวงอาทิตย์จะหลอมไฮโดรเจน 620 ล้านเมตริกตันทุกวินาที

การหลอมนิวเคลียส ( อังกฤษ: nuclear fusion) ในทาง ฟิสิกส์นิวเคลียร์ เป็นปฏิกิริยานิวเคลียร์อย่างหนึ่งที่ นิวเคลียสของอะตอมหนึ่งตัวหรือมากกว่าเข้ามาอยู่ใกล้กัน แล้วชนกันที่ความเร็วสูง รวมตัวกันกลายเป็นนิวเคลียสของอะตอมใหม่ที่หนักขึ้น ในระหว่างกระบวนการนี้ มวลของมันจะไม่เท่าเดิมเพราะมวลบางส่วนของนิวเคลียสที่รวมต้วจะถูกเปลี่ยนไปเป็นพลังงานโปรตอน

การหลอมนิวเคลียสสองนิวเคลียสที่มีมวลต่ำกว่าเหล็ก-56 (ที่ พร้อมกับนิกเกิล-62 มีพลังงานยึดเหนี่ยวต่อนิวคลีออนที่ใหญ่ที่สุด) โดยทั่วไปจะปลดปล่อยพลังงานออกมา ในขณะที่การหลอมนิวเคลียสที่หนักกว่าเหล็กจะ "ดูดซับ" พลังงาน การทำงานที่ตรงกันข้ามเรียกว่า " การแบ่งแยกนิวเคลียส" ซึ่งหมายความว่าโดยทั่วไปองค์ประกอบที่เบากว่าเท่านั้นที่สามารถหลอม เช่นไฮโดรเจนและฮีเลียม และในทำนองเดียวกันโดยทั่วไปองค์ประกอบที่หนักกว่าเท่านั้นที่สามารถแบ่งแยกได้ เช่นยูเรเนียมและพลูโทเนียม มีเหตุการณ์ทางดาราศาสตร์แบบสุดขั้วอย่างมากที่สามารถนำไปสู่​​ช่วงเวลาสั้น ๆ ของการหลอมด้วยนิวเคลียสที่หนักกว่า นี้เป็นกระบวนการที่ก่อให้เกิด nucleosynthesis ที่เป็นการสร้างธาตุหนักในช่วงเหตุการณ์ที่เรียกว่ามหานวดารา

หลังการค้นพบ "อุโมงค์ควอนตัม" โดยนักฟิสิกส์ นายฟรีดริช ฮุนท์ ในปี 1929 นายโรเบิร์ต แอตกินสันและนายฟริตซ์ Houtermans ใช้มวลขององค์ประกอบเบาที่วัดได้ในการคาดการณ์ว่าจำนวนมากของพลังงานสามารถที่จะถูกปลดปล่อยจากการทำหลอมนิวเคลียสขนาดเล็ก การหลอมในห้องปฏิบัติการของไอโซโทปของไฮโดรเจน เมื่อสร้างขึ้นระหว่างการทดลอง การแปรนิวเคลียสโดย เออร์เนสต์ รัทเทอร์ฟอร์ด ที่ได้ดำเนินการมาหลายปีก่อนหน้านี้ ก็ประสบความสำเร็จเป็นครั้งแรกโดยนายมาร์ค Oliphant ในปี 1932 ในช่วงที่เหลือของทศวรรษนั้น ขั้นตอนของวงจรหลักของการหลอมนิวเคลียสในดวงดาวได้รับการทำงานโดยนายฮันส์ Bethe การวิจัยในหลอมเพื่อวัตถุประสงค์ทางทหารเริ่มต้นขึ้นในช่วงต้นของทศวรรษที่ 1940 เมื่อเป็นส่วนหนึ่งของโครงการแมนแฮตตัน การหลอมก็ประสบความสำเร็จในปี 1951 ด้วยการทดสอบนิวเคลียร์แบบ "รายการเรือนกระจก" การหลอมนิวเคลียสในขนาดที่ใหญ่ในการระเบิดครั้งหนึ่งได้มีการดำเนินการครั้งแรกในวันที่ 1 พฤศจิกายน 1952 ในการทดสอบระเบิดไฮโดรเจนรหัสไอวีไมก์ (Ivy Mike)

การวิจัยเพื่อการพัฒนา thermonuclear fusion ที่ควบคุมได้สำหรับวัตถุประสงค์ทางพลเรือนก็ได้เริ่มขึ้นอย่างจริงจังในปี 1950 เช่นกัน และยังคงเป็นไปจนทุกวันนี้

กระบวนการ

การหลอมของ ดิวเทอเรียมกับ ทริเทียมทำให้เกิดฮีเลียม-4 และปลดปล่อยนิวตรอนหนึ่งตัวเป็นอิสระ พร้อมทั้งพลังงาน 17.59 MeV เมื่อปริมาณที่เหมาะสมของมวลมีการเปลี่ยนแปลงรูปแบบไปเป็นพลังงานจลน์ของผลผลิต เป็นไปตาม kinetic E = Δmc2, เมื่อ Δm เป็นการเปลี่ยนแปลงในมวลนิ่งของอนุภาคเหล่านั้น [1]

ต้นกำเนิดของพลังงานที่ปล่อยออกมาในการหลอมรวม ( อังกฤษ: fusion) ขององค์ประกอบเบาจะเกิดจากการมีปฏิสัมพันธ์ของสองแรงที่ตรงข้ามกัน แรงหนึ่งคือ แรงนิวเคลียสซึ่งรวมแรงจากโปรตอนและนิวตรอนเข้าด้วยกัน อีกแรงหนึ่งคือ แรงคูลอมบ์ซึ่งเป็นสาเหตุให้โปรตอนทั้งหลายผลักกันเอง โปรตอนจะมีประจุบวกและผลักกันเอง แต่พวกมันก็ยังคงอยู่ติดกัน แสดงให้เห็นถึงการดำรงอยู่ของอีกแรงหนึ่งที่เรียกว่าแรงดึงดูดของนิวเคลียส แรงนี้ถูกเรียกว่าแรงนิวเคลียร์ที่แข็งแกร่ง มันเอาชนะแรงผลักไฟฟ้าในระยะที่ใกล้กันมาก ผลของแรงนี้จะไม่สังเกตได้นอกนิวเคลียส นั่นคือความแรงจะขึ้นอยู่กับระยะทาง ทำให้มันเป็นแรงวิสัยใกล้ แรงเดียวกันยังดึงนิวคลีออน (นิวตรอนและโปรตอน) ให้อยู่ด้วยกัน [2] เนื่องจากว่าแรงนิวเคลียสจะแข็งแกร่งกว่าแรงคูลอมบ์สำหรับนิวเคลียสของอะตอมที่มีขนาดเล็กกว่าธาตุเหล็กและนิกเกิล การสร้างนิวเคลียสเหล่านี้ขึ้นจากนิวเคลียสที่เบากว่าโดยการหลอม จะปลดปล่อยพลังงานมากขึ้นจากแรงดึงดูดสุทธิของอนุภาคเหล่านี้ อย่างไรก็ตาม สำหรับนิวเคลียสที่มีขนาดใหญ่กว่า จะไม่มีพลังงานถูกปล่อยออกมา เนื่องจากแรงนิวเคลียสเป็นแรงพิสัยใกล้และไม่สามารถกระทำต่อเนื่องกับนิวเคลียสขนาดใหญ่ที่อยู่นิ่งๆได้ ดังนั้นพลังงานจะไม่ถูกปล่อยออกมาอีกต่อไปเมื่อนิวเคลียสดังกล่าวถูกทำขึ้นโดยการหลอม; แต่พลังงานจะถูกดูดซึมในกระบวนการดังกล่าวแทน

ปฏิกิริยาการหลอมธาตุเบาเป็นผู้ให้พลังงานกับดวงดาวและเป็นผู้ผลิตแทบทุกธาตุในกระบวนการที่เรียกว่า การสังเคราะห์นิวเคลียส การหลอมของธาตุที่เบากว่าในดวงดาวจะปลดปล่อยพลังงานออกมา(และมวลที่มักจะออกมาพร้อมกับมัน) ยกตัวอย่างเช่นในการหลอมของสองนิวเคลียสไฮโดรเจนให้เป็นฮีเลียม, 0.7% ของมวลจะหลุดออกไปจากระบบในรูปแบบของพลังงานจลน์หรือรูปแบบอื่น ๆ ของพลังงาน (เช่นรังสีแม่เหล็กไฟฟ้า) [3]

ในการวิจัยเพื่อการควบคุมการหลอม โดยมีวัตถุประสงค์เพื่อผลิตพลังงานการหลอมสำหรับการผลิตไฟฟ้า มีการดำเนินการมานานกว่า 60 ปี มันพบกับความยุ่งยากทางวิทยาศาสตร์และเทคโนโลยีอย่างมาก แต่ก็มีผลคืบหน้า ในปัจจุบันปฏิกิริยาการหลอมที่ควบคุมได้ไม่สามารถที่จะผลิตปฏิกิริยาการหลอม(ด้วยตนเองอย่างยั่งยืน)ที่คุ้มค่าการลงทุนได้ [4] การออกแบบที่ใช้การได้สำหรับเครื่องปฏิกรณ์ที่ในทางทฤษฎีแล้วจะส่งพลังงานการหลอมเป็นสิบเท่าของจำนวนพลังงานที่จำเป็นเพื่อสร้างความร้อนให้กับพลาสม่าจนถึงอุณหภูมิที่ต้องการอยู่ในระหว่างการพัฒนา (ดู ITER) สิ่งอำนวยความสะดวกใน ITER คาดว่าจะเสร็จสิ้นขั้นตอนการก่อสร้างในปี 2019 มันก็จะเริ่มติดตั้งเครื่องปฏิกรณ์ในปีเดียวกันและเริ่มต้นการทดลองพลาสม่าในปี 2020 แต่ไม่คาดว่ามันจะเริ่มการหลอมดิวเทอเรียม-ไอโซโทปเต็มรูปแบบจนกว่าจะถึงปี 2027 [5]

มันต้องใช้พลังงานอย่างมากในการที่จะบังคับให้นิวเคลียสหลอมละลาย แม้แต่ธาตุที่มีน้ำหนักเบาที่สุดเช่นไฮโดรเจน เป็นเพราะว่านิวเคลียสทุกตัวมีประจุบวกอันเนื่องมาจากโปรตอนในตัวมัน และเป็นอย่างเช่นกกแรงผลักของประจุ นิวเคลียสจะต่อต้านอย่างแรงถ้าถูกวางอยู่ใกล้กัน เมื่อถูกเร่งให้มีความเร็วสูง พวกมันสามารถเอาชนะแรงผลักไฟฟ้าสถิตนี้และจะถูกบังคับให้อยู่ใกล้พอสำหรับแรงดึงดูดนิวเคลียร์จนมีความแข็งแรงพอที่จะบรรลุการหลอม การหลอมของนิวเคลียสที่เบากว่า ซึ่งจะสร้างนิวเคลียสที่หนักขึ้นและมักจะเป็นนิวตรอนอิสระหรือโปรตอน โดยทั่วไปจะปลดปล่อยพลังงานมากขึ้นกว่าที่มันได้รับเพื่อที่จะบังคับให้นิวเคลียสทั้งหลายอยู่ด้วยกัน นี้เป็นกระบวนการคายความร้อนแบบหนึ่งที่สามารถผลิตปฏิกิริยาด้วยตนเองอย่างยั่งยืน สถานีจุดระเบิดแห่งชาติของสหรัฐ ซึ่งใช้การหลอมในภาชนะปิดที่เฉื่อยแบบขับเคลื่อนด้วยเลเซอร์ ( อังกฤษ: laser-driven inertial confinement fusion) ได้รับการคาดการณ์ว่าจะสามารถสร้างปฏิกิริยาการหลอมที่คุ้มทุนได้

การทดลองเป้าหมายเลเซอร์ขนาดใหญ่ได้ดำเนินการเป็นครั้งแรกในเดือนมิถุนายนปี 2009 และการทดลองการจุดระเบิดเริ่มต้นขึ้นในช่วงต้นปี 2011 [6] [7]

พลังงานที่ถูกปล่อยออกมาใน ปฏิกิริยานิวเคลียร์ส่วนใหญ่จะมีขนาดใหญ่กว่าใน ปฏิกิริยาเคมีอย่างมาก เพราะ พลังงานยึดเหนี่ยวที่ยึดนิวเคลียสเอาไว้จะมีขนาดใหญ่กว่าพลังงานที่ยึดอิเล็กตรอนไว้กับนิวเคลียส ยกตัวอย่างเช่น พลังงานจากการแตกตัวเป็นไอออน ( อังกฤษ: ionization energy) ที่ได้รับโดยการเพิ่มอิเล็กตรอนหนึ่งตัวกับนิวเคลียสไฮโดรเจนหนึ่งตัวเป็น 13.6 eV -น้อยกว่าหนึ่งในล้านของ 17.6 MeV ที่ถูกปล่อยออกมาในปฏิกิริยาดิวเทอเรียม-ไอโซโทป (D-T) ที่ได้แสดงในแผนภาพทางขวา (หนึ่งกรัมของสารจะปล่อย 339 GJ ของพลังงาน) ปฏิกิริยาการหลอมมีความหนาแน่นของพลังงานมากกว่าปฏิกิริยา นิวเคลียร์ฟิชชันหลายเท่า; ปฏิกิริยาการหลอมจะผลิตพลังงานต่อหน่วยของมวลมากกว่าอย่างมากแม้ว่าปฏิกิริยาฟิชชันแต่ละครั้งโดยทั่วไปจะมีพลังมากกว่าปฏิกิริยาการหลอมแต่ละครั้ง และปฏิกิริยาทั้งสองแบบยังมีพลังมากกว่าปฏิกิริยาทางเคมีหลายล้านเท่า มีแต่การแปลงโดยตรงของมวลไปเป็นพลังงานเท่านั้นที่มีพลังต่อหน่วยของมวลมากกว่าการหลอมนิวเคลียส เช่นที่เกิดจากการชนกันแบบทำลายล้างของสสารและปฏิสสาร

ภาษาอื่น ๆ
Afrikaans: Kernfusie
aragonés: Fusión nucleyar
العربية: اندماج نووي
asturianu: Fusión nuclear
čeština: Jaderná fúze
Deutsch: Kernfusion
Esperanto: Fuzio
español: Fusión nuclear
euskara: Fusio nuklear
Avañe'ẽ: Jehe'a mbytégua
Kreyòl ayisyen: Fizyon
magyar: Magfúzió
Bahasa Indonesia: Fusi nuklir
íslenska: Kjarnasamruni
日本語: 核融合反応
Basa Jawa: Fusi nuklir
한국어: 핵융합
Limburgs: Kernfusie
latviešu: Kodolsintēze
македонски: Нуклеарна фузија
മലയാളം: അണുസംയോജനം
Bahasa Melayu: Lakuran nuklear
Nederlands: Kernfusie
norsk nynorsk: Kjernefusjon
ਪੰਜਾਬੀ: ਨਿਊਕਲੀ ਮੇਲ
Piemontèis: Fusion nuclear
پنجابی: ایٹمی فیوژن
português: Fusão nuclear
sicilianu: Fusioni nucliari
srpskohrvatski / српскохрватски: Fuzija
Simple English: Nuclear fusion
slovenčina: Jadrová syntéza
slovenščina: Jedrsko zlivanje
српски / srpski: Nuklearna fuzija
Seeltersk: Käädenfusion
Basa Sunda: Fusi nuklir
svenska: Fusion
Türkçe: Füzyon
татарча/tatarça: Термотөш реакциясе
українська: Ядерний синтез
oʻzbekcha/ўзбекча: Termoyadroviy reaksiya
中文: 核聚变
Bân-lâm-gú: Hu̍t-chú iông-ha̍p