Sylvy Kornberg | career and research

Career and research

After earning her master's degree in biochemistry from the University of Rochester, Sylvy took a position at the National Cancer Institute, in Bethesda, Maryland, where she worked jointly with organic chemist Jonathan Hartwell, synthesizing novel carcinogens from plant extracts[3] and biologist Murray Shear, studying their effects on mice.[6] She re-met Arthur in Bethesda, where he had taken a position at the National Institutes of Health.[3] They got married in 1943 and had three sons between 1947 and 1950.[7] Sylvy took time off from the lab during this period to act as a full-time mother and wife.[7] During this time she edited science books from home for Interscience Publishers (now part of Wiley) and returned to the lab when her youngest son, Kenneth, was 3.[6]

In 1953 they moved to Washington University in St. Louis, Missouri where Arthur took a position as professor and chair of the microbiology department.[3] They stayed there from 1953 to 1959, during which time Sylvy worked in the lab with Arthur, and contributed greatly to the work on DNA replication that would earn him the 1959 Nobel Prize in Physiology or Medicine, which he shared with Severo Ochoa.[7] In Arthur's 1959 autobiography, For the Love of Enzymes, Arthur writes that Sylvy "contributed significantly to the science surrounding the discovery of DNA polymerase.”[6]

One large contribution Sylvy made to the work on DNA replication was the discovery and characterization of a contaminating enzyme that was inhibiting the DNA polymerization process they were trying to study. Sylvy was able to isolate and characterize the culprit: an enzyme that was degrading one of the DNA building blocks, deoxyguanosine triphosphate (dGTP) by removing its phosphates as a “tripolyphosphate” before it could be added.[3] As Robert Lehman, who was a postdoctoral researcher in the lab at the time and is now a professor emeritus at Stanford, puts it, “We were having a major problem with inhibitors of the replication reaction, and she solved the problem.”[3]

Her work during her time at Washington University also included research into an enzyme responsible for synthesizing long chains of phosphate groups, called polyphosphate (PolyP) and studying their role in helping cells store and retrieve energy.[1] In 1955 she isolated an enzyme from E. coli bacteria that synthesized PolyP and named it polyphosphate kinase (PPK).[7] This was the second example of enzymatic catalysis of a polymer. Arthur Kornberg returned to the study of PolyP in his later research years, after Sylvy's passing.[2]

In 1959, the Kornbergs moved to California, where Arthur had accepted a position as chief of biochemistry at Stanford University.[3] Sylvy continued to work with Arthur there for a couple of years before retiring.[7] At Stanford, she researched how bacteria-infecting viruses (bacteriophages) are able to avoid destruction of bacterial DNA by modifying their own DNA letters through the addition of glucose molecules. Sylvy isolated and characterized several of the enzymes the bacteriophages make to carry out this glucosylation.[8] After retiring, she continued to review and edit manuscripts from home, and returned to the lab for a couple more years to work with Arthur on studying the mechanism of how the anticancer drug bleomycin interferes with DNA replication.[3]

Other Languages