Late Triassic | climate and environment during the triassic period

Climate and environment during the Triassic Period

During the beginning of the Triassic Era, the earth consisted of a giant landmass known as Pangea, which covered about a quarter of earth's surface. Towards the end of the era, continental drift occurred which separated Pangea. At this time, polar ice was not present because of the large differences between the equator and the poles.[citation needed] A single, large landmass similar to Pangea would be expected to have extreme seasons; however, evidence offers contradictions. Evidence suggests that there is arid climate as well as proof of strong precipitation. The planet's atmosphere and temperature components were mainly warm and dry, with other seasonal changes in certain ranges.[citation needed]

The Middle Triassic was known to have consistent intervals of high levels of humidity. The circulation and movement of these humidity patterns, geographically, are not known however. The major "Carnian Pluvial Event" stands as one focus point of many studies. Different hypotheses of the events occurrence include eruptions, monsoonal effects, and changes caused by plate tectonics. Continental deposits also support certain ideas relative to the Triassic period. Sediments that include red beds, which are sandstones and shales of color, may suggest seasonal precipitation. Rocks also included dinosaur tracks, mudcracks, and fossils of crustaceans and fish, which provide climate evidence, since animals and plants can only live during periods of which they can survive through.

Evidence of environmental disruption and climate change

The Late Triassic is described as semiarid. Semiarid is characterized by light rainfall, having up to 10–20 inches of precipitation a year. The period had a fluctuating, warm climate in which it was occasionally marked by instances of powerful heat. Different basins in certain areas of Europe provided evidence of the emergence of the “Middle Carnian Pluvial Event." For example, the Western Tethys and German Basin was defined by the theory of a middle Carnian wet climate phase. This event stands as the most distinctive climate change within the Triassic period. Propositions for its cause include:

  • Different behaviors of atmospheric or oceanic circulation forced by plate tectonics may have participated in modifying the carbon cycle and other scientific factors.
  • heavy rains due to shifting of the earth
  • sparked by eruptions, typically originating from an accumulation of igneous rocks, which could have included liquid rock or volcanic rock formations

Theories and concepts are supported universally, due to extensive areal proof of Carnian siliciclastic sediments. The physical positions as well as comparisons of that location to surrounding sediments and layers stood as basis for recording data. Multiple resourced and recurring patterns in results of evaluations allowed for the satisfactory clarification of facts and common conceptions on the Late Triassic. Conclusions summarized that the correlation of these sediments led to the modified version of the new map of Central Eastern Pangea, as well as that the sediment's relation to the “Carnian Pluvial Event” is greater than expected.

  • High interest concerning the Triassic period has fueled the need to uncover more information about the time period's climate. The Late Triassic period is classified as a phase entirely flooded with phases of monsoonal events. A monsoon affects large regions and brings heavy rains along with powerful winds. Field studies confirm the impact and occurrence of strong monsoonal circulation during this time frame. However, hesitations concerning climatic variability remains. Upgrading knowledge on the climate of a period is a difficult task to assess. Understanding of and assumptions of temporal and spatial patterns of the Triassic period's climate variability still need revision. Diverse proxies hindered the flow of palaeontological evidence. Studies in certain zones are missing and could be benefited by collaborating the already existing but uncompared records of Triassic palaeoclimate.
  • A specific physical piece of evidence was found. A fire scar on the trunk of a tree, found in southeast Utah, dates back to the Late Triassic. The feature was evaluated and paved the path to the conclusion of one fire's history. It was categorized through comparison of other modern tree scars. The scar stood as evidence of Late Triassic wildfire, an old climatic event.

Biological impact

The impacts that the Late Triassic era had on surround environments and organisms were wildfire destruction of habitats and prevention of photosynthesis. Climatic cooling also occurred due to the soot in the atmosphere. Studies also show that 103 families of marine invertebrates became extinct at the end of the Triassic, yet another 175 lived on into the jurassic. Marine and extant species were hit fairly hard by extinctions during this period. Almost 20% of 300 extant families became extinct, and Bivalves, Cephalopods, and Brachiopods suffered greatly. 92% of Bivalves were wiped out episodically throughout the Triassic.

The end of the Triassic also brought about the decline of corals and reef builders during what is called a “reef gap”. The changes in sea levels brought this decline upon corals, particularly the Calcisponges and Scleractinian corals. However, some corals would make a resurgence during the Jurassic period. 17 Brachiopod species were also wiped out by the end of the Triassic. Furthermore, Conulariids became entirely extinct.

Other Languages
Simple English: Upper Triassic
srpskohrvatski / српскохрватски: Gornji trijas
svenska: Yngre trias
українська: Пізній тріас