DNA nanotechnology | references

References

  1. ^ a b DNA polyhedra: Goodman, Russel P.; Schaap, Iwan A. T.; Tardin, C. F.; Erben, Christof M.; Berry, Richard M.; Schmidt, C.F.; Turberfield, Andrew J. (9 December 2005). "Rapid chiral assembly of rigid DNA building blocks for molecular nanofabrication". Science. 310 (5754): 1661–1665. 2005Sci...310.1661G. 10.1126/science.1120367. 16339440.
  2. ^ a b c Overview: Mao, Chengde (December 2004). "The emergence of complexity: lessons from DNA". PLoS Biology. 2 (12): 2036–2038. 10.1371/journal.pbio.0020431. PMC PMC 535573. 15597116.
  3. ^ a b c d e Overview: Seeman, Nadrian C. (June 2004). "Nanotechnology and the double helix". Scientific American. 290 (6): 64–75. 2004SciAm.290f..64S. 10.1038/scientificamerican0604-64. 15195395.
  4. ^ Background: Pelesko, John A. (2007). Self-assembly: the science of things that put themselves together. New York: Chapman & Hall/CRC. pp. 5, 7. ISBN 978-1-58488-687-7.
  5. ^ a b c d e Overview: Seeman, Nadrian C. (2010). "Nanomaterials based on DNA". Annual Review of Biochemistry. 79: 65–87. 10.1146/annurev-biochem-060308-102244. PMC PMC 3454582. 20222824.
  6. ^ Background: Long, Eric C. (1996). "Fundamentals of nucleic acids". In Hecht, Sidney M. Bioorganic chemistry: nucleic acids. New York: Oxford University Press. pp. 4–10. ISBN 978-0-19-508467-2.
  7. ^ RNA nanotechnology: Chworos, Arkadiusz; Severcan, Isil; Koyfman, Alexey Y.; Weinkam, Patrick; Oroudjev, Emin; Hansma, Helen G.; Jaeger, Luc (2004). "Building Programmable Jigsaw Puzzles with RNA". Science. 306 (5704): 2068–2072. 2004Sci...306.2068C. 10.1126/science.1104686. 15604402.
  8. ^ RNA nanotechnology: Guo, Peixuan (2010). "The Emerging Field of RNA Nanotechnology". Nature Nanotechnology. 5 (12): 833–842. 2010NatNa...5..833G. 10.1038/nnano.2010.231. PMC PMC 3149862. 21102465.
  9. ^ a b c d Dynamic DNA nanotechnology: Zhang, D. Y.; Seelig, G. (February 2011). "Dynamic DNA nanotechnology using strand-displacement reactions". Nature Chemistry. 3 (2): 103–113. 2011NatCh...3..103Z. 10.1038/nchem.957. 21258382.
  10. ^ a b c d e Structural DNA nanotechnology: Seeman, Nadrian C. (November 2007). "An overview of structural DNA nanotechnology". Molecular Biotechnology. 37 (3): 246–257. 10.1007/s12033-007-0059-4. PMC PMC 3479651. 17952671.
  11. ^ Dynamic DNA nanotechnology: Lu, Y.; Liu, J. (December 2006). "Functional DNA nanotechnology: Emerging applications of DNAzymes and aptamers". Current Opinion in Biotechnology. 17 (6): 580–588. 10.1016/j.copbio.2006.10.004. 17056247.
  12. ^ Other arrays: Strong, Michael (March 2004). "Protein Nanomachines". PLoS Biology. 2 (3): e73. 10.1371/journal.pbio.0020073. PMC PMC 368168. 15024422.
  13. ^ Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; Labean, T. H. (26 September 2003). "DNA-templated self-assembly of protein arrays and highly conductive nanowires". Science. 301 (5641): 1882–1884. 2003Sci...301.1882Y. 10.1126/science.1089389. 14512621.
  14. ^ a b Algorithmic self-assembly: Rothemund, Paul W. K.; Papadakis, Nick; Winfree, Erik (December 2004). "Algorithmic self-assembly of DNA Sierpinski triangles". PLoS Biology. 2 (12): 2041–2053. 10.1371/journal.pbio.0020424. PMC PMC 534809. 15583715.
  15. ^ DX arrays: Winfree, Erik; Liu, Furong; Wenzler, Lisa A.; Seeman, Nadrian C. (6 August 1998). "Design and self-assembly of two-dimensional DNA crystals". Nature. 394 (6693): 529–544. 1998Natur.394..539W. 10.1038/28998. 9707114.
  16. ^ DX arrays: Liu, Furong; Sha, Ruojie; Seeman, Nadrian C. (10 February 1999). "Modifying the surface features of two-dimensional DNA crystals". Journal of the American Chemical Society. 121 (5): 917–922. 10.1021/ja982824a.
  17. ^ Other arrays: Mao, Chengde; Sun, Weiqiong; Seeman, Nadrian C. (16 June 1999). "Designed two-dimensional DNA Holliday junction arrays visualized by atomic force microscopy". Journal of the American Chemical Society. 121 (23): 5437–5443. 10.1021/ja9900398.
  18. ^ Other arrays: Constantinou, Pamela E.; Wang, Tong; Kopatsch, Jens; Israel, Lisa B.; Zhang, Xiaoping; Ding, Baoquan; Sherman, William B.; Wang, Xing; Zheng, Jianping; Sha, Ruojie; Seeman, Nadrian C. (21 September 2006). "Double cohesion in structural DNA nanotechnology". Organic and Biomolecular Chemistry. 4 (18): 3414–3419. 10.1039/b605212f. PMC PMC 3491902. 17036134.
  19. ^ Other arrays: Mathieu, Frederick; Liao, Shiping; Kopatsch, Jens; Wang, Tong; Mao, Chengde; Seeman, Nadrian C. (April 2005). "Six-helix bundles designed from DNA". Nano Letters. 5 (4): 661–665. 2005NanoL...5..661M. 10.1021/nl050084f. PMC PMC 3464188. 15826105.
  20. ^ a b c History: Seeman, Nadrian (9 June 2010). "Structural DNA nanotechnology: growing along with Nano Letters". Nano Letters. 10 (6): 1971–1978. 2010NanoL..10.1971S. 10.1021/nl101262u. PMC PMC 2901229. 20486672.
  21. ^ Algorithmic self-assembly: Barish, Robert D.; Rothemund, Paul W. K.; Winfree, Erik (December 2005). "Two computational primitives for algorithmic self-assembly: copying and counting". Nano Letters. 5 (12): 2586–2592. 2005NanoL...5.2586B. CiteSeerX CiteSeerX 10.1.1.155.676. 10.1021/nl052038l. 16351220.
  22. ^ a b c d Design: Feldkamp, U.; Niemeyer, C. M. (13 March 2006). "Rational design of DNA nanoarchitectures". Angewandte Chemie International Edition. 45 (12): 1856–1876. 10.1002/anie.200502358. 16470892.
  23. ^ DNA nanotubes: Rothemund, Paul W. K.; Ekani-Nkodo, Axel; Papadakis, Nick; Kumar, Ashish; Fygenson, Deborah Kuchnir & Winfree, Erik (22 December 2004). "Design and Characterization of Programmable DNA Nanotubes". Journal of the American Chemical Society. 126 (50): 16344–16352. 10.1021/ja044319l. 15600335.
  24. ^ DNA nanotubes: Yin, P.; Hariadi, R. F.; Sahu, S.; Choi, H. M. T.; Park, S. H.; Labean, T. H.; Reif, J. H. (8 August 2008). "Programming DNA Tube Circumferences". Science. 321 (5890): 824–826. 2008Sci...321..824Y. 10.1126/science.1157312. 18687961.
  25. ^ Three-dimensional arrays: Zheng, Jianping; Birktoft, Jens J.; Chen, Yi; Wang, Tong; Sha, Ruojie; Constantinou, Pamela E.; Ginell, Stephan L.; Mao, Chengde; Seeman, Nadrian C. (3 September 2009). "From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal". Nature. 461 (7260): 74–77. 2009Natur.461...74Z. 10.1038/nature08274. PMC PMC 2764300. 19727196.
  26. ^ a b c d e f g h i Overview: Pinheiro, A. V.; Han, D.; Shih, W. M.; Yan, H. (December 2011). "Challenges and opportunities for structural DNA nanotechnology". Nature Nanotechnology. 6 (12): 763–772. 2011NatNa...6..763P. 10.1038/nnano.2011.187. PMC PMC 3334823. 22056726.
  27. ^ DNA polyhedra: Zhang, Yuwen; Seeman, Nadrian C. (1 March 1994). "Construction of a DNA-truncated octahedron". Journal of the American Chemical Society. 116 (5): 1661–1669. 10.1021/ja00084a006.
  28. ^ DNA polyhedra: Shih, William M.; Quispe, Joel D.; Joyce, Gerald F. (12 February 2004). "A 1.7-kilobase single-stranded DNA that folds into a nanoscale octahedron". Nature. 427 (6975): 618–621. 2004Natur.427..618S. 10.1038/nature02307. 14961116.
  29. ^ a b c DNA origami: Rothemund, Paul W. K. (16 March 2006). "Folding DNA to create nanoscale shapes and patterns". Nature. 440 (7082): 297–302. 2006Natur.440..297R. 10.1038/nature04586. 16541064.
  30. ^ Tikhomirov, Grigory; Petersen, Philip; Qian, Lulu (December 2017). "Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns". Nature. 552 (7683): 67–71. 2017Natur.552...67T. 10.1038/nature24655. 1476-4687. 29219965.
  31. ^ a b DNA origami: Douglas, Shawn M.; Dietz, Hendrik; Liedl, Tim; Högberg, Björn; Graf, Franziska; Shih, William M. (21 May 2009). "Self-assembly of DNA into nanoscale three-dimensional shapes". Nature. 459 (7245): 414–418. 2009Natur.459..414D. 10.1038/nature08016. PMC PMC 2688462. 19458720.
  32. ^ a b DNA boxes: Andersen, Ebbe S.; Dong, Mingdong; Nielsen, Morten M.; Jahn, Kasper; Subramani, Ramesh; Mamdouh, Wael; Golas, Monika M.; Sander, Bjoern; et al. (7 May 2009). "Self-assembly of a nanoscale DNA box with a controllable lid". Nature. 459 (7243): 73–76. 2009Natur.459...73A. 10.1038/nature07971. 11858/00-001M-0000-0010-9363-9. 19424153.
  33. ^ DNA boxes: Ke, Yonggang; Sharma, Jaswinder; Liu, Minghui; Jahn, Kasper; Liu, Yan; Yan, Hao (10 June 2009). "Scaffolded DNA origami of a DNA tetrahedron molecular container". Nano Letters. 9 (6): 2445–2447. 2009NanoL...9.2445K. 10.1021/nl901165f. 19419184.
  34. ^ Overview: Endo, M.; Sugiyama, H. (12 October 2009). "Chemical approaches to DNA nanotechnology". ChemBioChem. 10 (15): 2420–2443. 10.1002/cbic.200900286. 19714700.
  35. ^ Nanoarchitecture: Zheng, Jiwen; Constantinou, Pamela E.; Micheel, Christine; Alivisatos, A. Paul; Kiehl, Richard A.; Seeman Nadrian C. (July 2006). "2D Nanoparticle Arrays Show the Organizational Power of Robust DNA Motifs". Nano Letters. 6 (7): 1502–1504. 2006NanoL...6.1502Z. 10.1021/nl060994c. PMC PMC 3465979. 16834438.
  36. ^ Nanoarchitecture: Park, Sung Ha; Pistol, Constantin; Ahn, Sang Jung; Reif, John H.; Lebeck, Alvin R.; Dwyer, Chris; LaBean, Thomas H. (October 2006). "Finite-size, fully addressable DNA tile lattices formed by hierarchical assembly procedures". Angewandte Chemie. 118 (40): 749–753. 10.1002/ange.200690141.
  37. ^ Nanoarchitecture: Cohen, Justin D.; Sadowski, John P.; Dervan, Peter B. (22 October 2007). "Addressing single molecules on DNA nanostructures". Angewandte Chemie International Edition. 46 (42): 7956–7959. 10.1002/anie.200702767. 17763481.
  38. ^ Nanoarchitecture: Maune, Hareem T.; Han, Si-Ping; Barish, Robert D.; Bockrath, Marc; Goddard III, William A.; Rothemund, Paul W. K.; Winfree, Erik (January 2009). "Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates". Nature Nanotechnology. 5 (1): 61–66. 2010NatNa...5...61M. 10.1038/nnano.2009.311. 19898497.
  39. ^ Nanoarchitecture: Liu, J.; Geng, Y.; Pound, E.; Gyawali, S.; Ashton, J. R.; Hickey, J.; Woolley, A. T.; Harb, J. N. (22 March 2011). "Metallization of branched DNA origami for nanoelectronic circuit fabrication". ACS Nano. 5 (3): 2240–2247. 10.1021/nn1035075. 21323323.
  40. ^ Nanoarchitecture: Deng, Z.; Mao, C. (6 August 2004). "Molecular lithography with DNA nanostructures". Angewandte Chemie International Edition. 43 (31): 4068–4070. 10.1002/anie.200460257. 15300697.
  41. ^ a b c d DNA machines: Bath, Jonathan; Turberfield, Andrew J. (May 2007). "DNA nanomachines". Nature Nanotechnology. 2 (5): 275–284. 2007NatNa...2..275B. 10.1038/nnano.2007.104. 18654284.
  42. ^ DNA machines: Mao, Chengde; Sun, Weiqiong; Shen, Zhiyong; Seeman, Nadrian C. (14 January 1999). "A DNA nanomechanical device based on the B-Z transition". Nature. 397 (6715): 144–146. 1999Natur.397..144M. 10.1038/16437. 9923675.
  43. ^ DNA machines: Yurke, Bernard; Turberfield, Andrew J.; Mills, Allen P., Jr; Simmel, Friedrich C.; Neumann, Jennifer L. (10 August 2000). "A DNA-fuelled molecular machine made of DNA". Nature. 406 (6796): 605–609. 2000Natur.406..605Y. 10.1038/35020524. 10949296.
  44. ^ DNA machines: Yan, Hao; Zhang, Xiaoping; Shen, Zhiyong; Seeman, Nadrian C. (3 January 2002). "A robust DNA mechanical device controlled by hybridization topology". Nature. 415 (6867): 62–65. 2002Natur.415...62Y. 10.1038/415062a. 11780115.
  45. ^ DNA machines: Feng, L.; Park, S. H.; Reif, J. H.; Yan, H. (22 September 2003). "A two-state DNA lattice switched by DNA nanoactuator". Angewandte Chemie. 115 (36): 4478–4482. 10.1002/ange.200351818.
  46. ^ DNA machines: Goodman, R. P.; Heilemann, M.; Doose, S. R.; Erben, C. M.; Kapanidis, A. N.; Turberfield, A. J. (February 2008). "Reconfigurable, braced, three-dimensional DNA nanostructures". Nature Nanotechnology. 3 (2): 93–96. 2008NatNa...3...93G. 10.1038/nnano.2008.3. 18654468.
  47. ^ Applications: Douglas, Shawn M.; Bachelet, Ido; Church, George M. (17 February 2012). "A logic-gated nanorobot for targeted transport of molecular payloads". Science. 335 (6070): 831–834. 2012Sci...335..831D. 10.1126/science.1214081. 22344439.
  48. ^ DNA walkers: Shin, Jong-Shik; Pierce, Niles A. (8 September 2004). "A synthetic DNA walker for molecular transport". Journal of the American Chemical Society. 126 (35): 10834–10835. 10.1021/ja047543j. 15339155.
  49. ^ DNA walkers: Sherman, William B.; Seeman, Nadrian C. (July 2004). "A precisely controlled DNA biped walking device". Nano Letters. 4 (7): 1203–1207. 2004NanoL...4.1203S. 10.1021/nl049527q.
  50. ^ DNA walkers: Tian, Ye; He, Yu; Chen, Yi; Yin, Peng; Mao, Chengde (11 July 2005). "A DNAzyme that walks processively and autonomously along a one-dimensional track". Angewandte Chemie. 117 (28): 4429–4432. 10.1002/ange.200500703.
  51. ^ DNA walkers: Bath, Jonathan; Green, Simon J.; Turberfield, Andrew J. (11 July 2005). "A free-running DNA motor powered by a nicking enzyme". Angewandte Chemie International Edition. 44 (28): 4358–4361. 10.1002/anie.200501262. 15959864.
  52. ^ Functional DNA walkers: Lund, Kyle; Manzo, Anthony J.; Dabby, Nadine; Michelotti, Nicole; Johnson-Buck, Alexander; Nangreave, Jeanette; Taylor, Steven; Pei, Renjun; Stojanovic, Milan N.; Walter, Nils G.; Winfree, Erik; Yan, Hao (13 May 2010). "Molecular robots guided by prescriptive landscapes". Nature. 465 (7295): 206–210. 2010Natur.465..206L. 10.1038/nature09012. PMC PMC 2907518. 20463735.
  53. ^ Functional DNA walkers: He, Yu; Liu, David R. (November 2010). "Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker". Nature Nanotechnology. 5 (11): 778–782. 2010NatNa...5..778H. 10.1038/nnano.2010.190. PMC PMC 2974042. 20935654.
  54. ^ Pan, J; Li, F; Cha, TG; Chen, H; Choi, JH (2015). "Recent progress on DNA based walkers". Current Opinion in Biotechnology. 34: 56–64. 10.1016/j.copbio.2014.11.017. 25498478. Retrieved 2015-09-28.
  55. ^ a b c Kinetic assembly: Yin, Peng; Choi, Harry M. T.; Calvert, Colby R.; Pierce, Niles A. (17 January 2008). "Programming biomolecular self-assembly pathways". Nature. 451 (7176): 318–322. 2008Natur.451..318Y. 10.1038/nature06451. 18202654.
  56. ^ Fuzzy and Boolean logic gates based on DNA: Zadegan, R. M.; Jepsen, M. D. E.; Hildebrandt, L. L.; Birkedal, V.; Kjems, J. R. (2015). "Construction of a Fuzzy and Boolean Logic Gates Based on DNA". Small. 11 (15): 1811–7. 10.1002/smll.201402755. 25565140.
  57. ^ Strand displacement cascades: Seelig, G.; Soloveichik, D.; Zhang, D. Y.; Winfree, E. (8 December 2006). "Enzyme-free nucleic acid logic circuits". Science. 314 (5805): 1585–1588. 2006Sci...314.1585S. 10.1126/science.1132493. 17158324.
  58. ^ Strand displacement cascades: Qian, Lulu; Winfree, Erik (3 June 2011). "Scaling up digital circuit computation with DNA strand displacement cascades". Science. 332 (6034): 1196–1201. 2011Sci...332.1196Q. 10.1126/science.1200520. 21636773.
  59. ^ a b c d e History/applications: Service, Robert F. (3 June 2011). "DNA nanotechnology grows up". Science. 332 (6034): 1140–1143. 10.1126/science.332.6034.1140. 21636754.
  60. ^ Applications: Rietman, Edward A. (2001). Molecular engineering of nanosystems. Springer. pp. 209–212. ISBN 978-0-387-98988-4. Retrieved 17 April 2011.
  61. ^ M. Zadegan, Reza; et, al. (2012). "Construction of a 4 Zeptoliters Switchable 3D DNA Box Origami". ACS Nano. 6 (11): 10050–10053. 10.1021/nn303767b. 23030709.
  62. ^ Applications: Jungmann, Ralf; Renner, Stephan; Simmel, Friedrich C. (March 2008). "From DNA nanotechnology to synthetic biology". HFSP Journal. 2 (2): 99–109. 10.2976/1.2896331. PMC PMC 2645571. 19404476.
  63. ^ Lovy, Howard (5 July 2011). "DNA cages can unleash meds inside cells". fiercedrugdelivery.com. Retrieved 22 September 2013.
  64. ^ Walsh, Anthony; Yin, Hai; Erben, Christoph; Wood, Matthew; Turberfield, Andrew (2011). "DNA Cage Delivery to Mammalian Cells". ACS Nano. 5 (7): 5427–5432. 10.1021/nn2005574. 21696187.
  65. ^ Trafton, Anne (4 June 2012). "Researchers achieve RNA interference, in a lighter package". MIT News. Retrieved 22 September 2013.
  66. ^ Lee, Hyukjin; Lytton-Jean, Abigail; Chen, Yi; Love, Kevin; Park, Angela; Karagiannis, Emmanouil; Sehgal, Alfica; Querbes, William; et al. (2012). "Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery" (PDF). Nature Nanotechnology. 7 (6): 389–393. 2012NatNa...7..389L. 10.1038/NNANO.2012.73. PMC PMC 3898745. 22659608.
  67. ^ Kim, Kyoung-Ran; Kim, Da-Rae; Lee, Taemin; Yhee, Ji Young; Kim, Byeong-Su; Kwon, Ick Chan; Ahn, Dae-Ro (2013). "Drug delivery by a self-assembled DNA tetrahedron for overcoming drug resistance in breast cancer cells". Chemical Communications. 49 (20): 2010–2. 10.1039/c3cc38693g. 1359-7345. 23380739.
  68. ^ DNA ion channels: Langecker, M; Arnaut, V; Martin, TG; List, J; Renner, S; Mayer, M; Dietz, H; Simmel, FC (16 November 2012). "Synthetic lipid membrane channels formed by designed DNA nanostructures". Science. 338 (6109): 932–936. 10.1126/science.1225624. PMC PMC 3716461. 23161995.
  69. ^ a b DNA ion channels: Göpfrich, K; Li, CY; Mames, I; Bhamidimarri, SP; Ricci, M; Yoo, J; Mames, A; Ohmann, A; Winterhalter, M; Stulz, E; Aksimentiev, A; Keyser, UF (13 July 2016). "Ion Channels Made from a Single Membrane-Spanning DNA Duplex". Nano Letters. 16 (7): 4665–4669. 10.1021/acs.nanolett.6b02039. PMC PMC 4948918. 27324157.
  70. ^ DNA ion channels: Burns, JR; Stulz, E; Howorka, S (12 June 2013). "Self-assembled DNA nanopores that span lipid bilayers". Nano Letters. 13 (6): 2351–2356. CiteSeerX CiteSeerX 10.1.1.659.7660. 10.1021/nl304147f. 23611515.
  71. ^ DNA ion channels: Burns, JR; Göpfrich, K; Wood, JW; Thacker, VV; Stulz, E; Keyser, UF; Howorka, S (11 November 2013). "Lipid-bilayer-spanning DNA nanopores with a bifunctional porphyrin anchor". Angewandte Chemie (International Ed. In English). 52 (46): 12069–12072. 10.1002/anie.201305765. PMC PMC 4016739. 24014236.
  72. ^ DNA ion channels: Seifert, A; Göpfrich, K; Burns, JR; Fertig, N; Keyser, UF; Howorka, S (24 February 2015). "Bilayer-spanning DNA nanopores with voltage-switching between open and closed state". ACS Nano. 9 (2): 1117–1126. 10.1021/nn5039433. PMC PMC 4508203. 25338165.
  73. ^ DNA ion channels: Göpfrich, Kerstin; Zettl, Thomas; Meijering, Anna E. C.; Hernández-Ainsa, Silvia; Kocabey, Samet; Liedl, Tim; Keyser, Ulrich F. (8 April 2015). "DNA-Tile Structures Induce Ionic Currents through Lipid Membranes". Nano Letters. 15 (5): 3134–3138. 10.1021/acs.nanolett.5b00189. 25816075.
  74. ^ DNA ion channels: Burns, Jonathan R.; Seifert, Astrid; Fertig, Niels; Howorka, Stefan (11 January 2016). "A biomimetic DNA-based channel for the ligand-controlled transport of charged molecular cargo across a biological membrane". Nature Nanotechnology. 11 (2): 152–156. 10.1038/nnano.2015.279. 26751170.
  75. ^ DNA ion channels: Göpfrich, Kerstin; Li, Chen-Yu; Ricci, Maria; Bhamidimarri, Satya Prathyusha; Yoo, Jejoong; Gyenes, Bertalan; Ohmann, Alexander; Winterhalter, Mathias; Aksimentiev, Aleksei; Keyser, Ulrich F. (23 August 2016). "Large-Conductance Transmembrane Porin Made from DNA Origami". ACS Nano. 10 (9): 8207–8214. 10.1021/acsnano.6b03759. PMC PMC 5043419. 27504755.
  76. ^ DNA scramblase: Ohmann, Alexander; Li, Chen-Yu; Maffeo, Christopher; Al Nahas, Kareem; Baumann, Kevin N.; Göpfrich, Kerstin; Yoo, Jejoong; Keyser, Ulrich F.; Aksimentiev, Aleksei (21 June 2018). "A synthetic enzyme built from DNA flips 107 lipids per second in biological membranes". Nature Communications. 9 (1): 2426. 10.1038/s41467-018-04821-5. PMC PMC 6013447. 29930243.
  77. ^ a b c Design: Brenneman, Arwen; Condon, Anne (25 September 2002). "Strand design for biomolecular computation". Theoretical Computer Science. 287: 39–58. 10.1016/S0304-3975(02)00135-4.
  78. ^ Overview: Lin, Chenxiang; Liu, Yan; Rinker, Sherri; Yan, Hao (11 August 2006). "DNA tile based self-assembly: building complex nanoarchitectures". ChemPhysChem. 7 (8): 1641–1647. 10.1002/cphc.200600260. 16832805.
  79. ^ a b c Design: Dirks, Robert M.; Lin, Milo; Winfree, Erik; Pierce, Niles A. (15 February 2004). "Paradigms for computational nucleic acid design". Nucleic Acids Research. 32 (4): 1392–1403. 10.1093/nar/gkh291. PMC PMC 390280. 14990744.
  80. ^ Methods: Ellington, A.; Pollard, J. D. (1 May 2001). "Synthesis and purification of oligonucleotides". Current Protocols in Molecular Biology. Current Protocols in Molecular Biology. Chapter 2. pp. Unit2.11. 10.1002/0471142727.mb0211s42. ISBN 978-0471142720. 18265179.
  81. ^ Methods: Ellington, A.; Pollard, J. D. (1 May 2001). "Purification of oligonucleotides using denaturing polyacrylamide gel electrophoresis". Current Protocols in Molecular Biology. Current Protocols in Molecular Biology. Chapter 2. pp. Unit2.12. 10.1002/0471142727.mb0212s42. ISBN 978-0471142720. 18265180.
  82. ^ Methods: Gallagher, S. R.; Desjardins, P. (1 July 2011). "Quantitation of nucleic acids and proteins". Current Protocols Essential Laboratory Techniques. 10.1002/9780470089941.et0202s5. ISBN 978-0470089934.
  83. ^ Methods: Chory, J.; Pollard, J. D. (1 May 2001). "Separation of small DNA fragments by conventional gel electrophoresis". Current Protocols in Molecular Biology. Current Protocols in Molecular Biology. Chapter 2. pp. Unit2.7. 10.1002/0471142727.mb0207s47. ISBN 978-0471142720. 18265187.
  84. ^ Methods: Walter, N. G. (1 February 2003). "Probing RNA structural dynamics and function by fluorescence resonance energy transfer (FRET)". Current Protocols in Nucleic Acid Chemistry. Current Protocols in Nucleic Acid Chemistry. Chapter 11. pp. 11.10.1–11.10.23. 10.1002/0471142700.nc1110s11. ISBN 978-0471142706. 18428904.
  85. ^ Methods: Lin, C.; Ke, Y.; Chhabra, R.; Sharma, J.; Liu, Y.; Yan, H. (2011). "Synthesis and Characterization of Self-Assembled DNA Nanostructures". In Zuccheri, G. and Samorì, B. DNA Nanotechnology: Methods and Protocols. Methods in Molecular Biology. Methods in Molecular Biology. 749. pp. 1–11. 10.1007/978-1-61779-142-0_1. ISBN 978-1-61779-141-3. 21674361.
  86. ^ Methods: Bloomfield, Victor A.; Crothers, Donald M.; Tinoco, Jr., Ignacio (2000). Nucleic acids: structures, properties, and functions. Sausalito, Calif: University Science Books. pp. 84–86, 396–407. ISBN 978-0-935702-49-1.
  87. ^ a b c History: Pelesko, John A. (2007). Self-assembly: the science of things that put themselves together. New York: Chapman & Hall/CRC. pp. 201, 242, 259. ISBN 978-1-58488-687-7.
  88. ^ History: See "Current crystallization protocol". Nadrian Seeman Lab. for a statement of the problem, and "DNA cages containing oriented guests". Nadrian Seeman Laboratory. for the proposed solution.
  89. ^ a b DNA origami: Rothemund, Paul W. K. (2006). "Scaffolded DNA origami: from generalized multicrossovers to polygonal networks". In Chen, Junghuei; Jonoska, Natasha; Rozenberg, Grzegorz. Nanotechnology: science and computation. Natural Computing Series. New York: Springer. pp. 3–21. CiteSeerX CiteSeerX 10.1.1.144.1380. 10.1007/3-540-30296-4_1. ISBN 978-3-540-30295-7.
  90. ^ Nanoarchitecture: Robinson, Bruche H.; Seeman, Nadrian C. (August 1987). "The design of a biochip: a self-assembling molecular-scale memory device". Protein Engineering. 1 (4): 295–300. 10.1093/protein/1.4.295. 3508280.
  91. ^ Nanoarchitecture: Xiao, Shoujun; Liu, Furong; Rosen, Abbey E.; Hainfeld, James F.; Seeman, Nadrian C.; Musier-Forsyth, Karin; Kiehl, Richard A. (August 2002). "Selfassembly of metallic nanoparticle arrays by DNA scaffolding". Journal of Nanoparticle Research. 4 (4): 313–317. 2002JNR.....4..313X. 10.1023/A:1021145208328.
  92. ^ History: Hopkin, Karen (August 2011). "Profile: 3-D seer". The Scientist. Archived from the original on 10 October 2011. Retrieved 8 August 2011.
Other Languages