Plano proyectivo | los axiomas y teoremas

Los axiomas y teoremas

Pero aún nos queda abordar la cuestión de la estructura subyacente en la geometría proyectiva, de explicitar sus axiomas. Los geómetras alemanes del siglo XIX alcanzaron a exponerla considerando el retículo formado por las subvariedades lineales (puntos, rectas, planos, etc.). Lo caracterizaron como un retículo de dimensión 3 (en el caso del espacio) con las siguientes propiedades:

  1. dim(A+B) = dim(A) + dim(B) - dim(A∩B)
  2. Hay 5 puntos en posición general (ningún plano pasa por 4 de ellos).
  3. Es válido el Teorema de Desargues.

La contribución española

Si se desea que el cuerpo de coordenadas sea conmutativo, se ha de imponer la validez del teorema del hexágono de Pappus. De hecho, el catedrático de instituto Ventura de los Reyes Prósper (Castuera, 31 de mayo de 1863 - Toledo, 27 de noviembre de 1922) escribió una carta a Pasch explicando cómo en el espacio el teorema de Desargues se sigue de las otras dos propiedades y es, por tanto, superfluo. Pasch, asombrado ante la sencillez del argumento («... auf denkbar einfachste Art...») que simplificaba notablemente su reciente libro, lo publicó en 1888 en los Matematische Annalen. Es la primera contribución española publicada en revista de tal importancia. En el caso del plano proyectivo, obviamente se ha de exigir que se un retículo de dimensión con 4 puntos en posición general (ninguna recta pasa por 3 de ellos); pero en tal caso el teorema de Desargues ya no es consecuencia de las otras dos propiedades, sino que debe seguir manteniéndose como un axioma adicional.

En pleno siglo XX

Pero la sencilla recta proyectiva se resiste a ser caracterizada como retículo, pues su relación de orden es absolutamente trivial. Hasta mediados del siglo XX no se logró un marco conceptual que englobase tanto la estructura de la recta proyectiva como la del plano y el espacio proyectivo. El concepto de «esquema» introducido por Grothendieck permite recogerlos en su seno y, como regalo sobreabundante, también todo el álgebra conmutativa y gran parte de la aritmética.

Other Languages