பேயசின் தேற்றம்

கேம்பிரிட்சில் அமைந்துள்ள பேயசின் தேற்றத்தின் எளிய கூற்றைக் காட்டும் நீல நிற நியான் விளக்கு[1]

நிகழ்தகவுக் கோட்பாட்டிலும் புள்ளியியலிலும் பேயசின் தேற்றம் (Bayes' theorem) அல்லது பேயசின் விதி (Bayes' law) அல்லது பேயசின் நெறி (Bayes' Rule) என்பது நிகழ்ச்சியுடன் தொடர்புபட்ட கட்டுப்பாடுகளின் அடிப்படையில் ஒரு நிகழ்ச்சியின் நிகழ்தகவைக் கூறும் தேற்றம் ஆகும்.[2] தோமசு பேயசு என்ற புள்ளியியலாளரின் பெயரால் இத்தேற்றம் வழங்கப்படுகின்றது.[3]

தேற்றத்தின் கணித வடிவம்

இரு தெரிவு மரங்களின் மீப்பொருந்துகையால் பேயசின் தேற்றம் காட்சிப்படுத்தப்படுகின்றது.

பேயசின் தேற்றமானது கணித வடிவத்தில் பின்வரும் சமன்பாட்டால் தரப்படும்.

[4]

இங்கு A, B என்பன நிகழ்ச்சிவெளியிலுள்ள இரு நிகழ்ச்சிகளாகும். P(A) ≠ 0, P(B) ≠ 0

  • P(A), P(B) என்பன முறையே, ஒன்றையொன்று சாராமல், A, B என்பவற்றின் நிகழ்தகவுகளாகும்.
  • நிகழ்ச்சி B நடைபெற்றதாயின், நிகழ்ச்சி Aஇன் கட்டுப்பாட்டு நிகழ்தகவு P(A | B) ஆகும்.[5]
  • நிகழ்ச்சி A நடைபெற்றதாயின், நிகழ்ச்சி Bஇன் கட்டுப்பாட்டு நிகழ்தகவு P(B | A) ஆகும்.

நிறுவல்

பிரிக்க,

[6]
Other Languages
aragonés: Teorema de Bayes
العربية: مبرهنة بايز
asturianu: Teorema de Bayes
беларуская: Тэарэма Баеса
беларуская (тарашкевіца)‎: Тэарэма Баеса
български: Теорема на Бейс
čeština: Bayesova věta
Ελληνικά: Θεώρημα Μπέυζ
فارسی: قضیه بیز
Gaeilge: Teoirim Bayes
עברית: חוק בייס
magyar: Bayes-tétel
Bahasa Indonesia: Teorema Bayes
íslenska: Formúla Bayes
한국어: 베이즈 정리
lietuvių: Bajeso teorema
Nederlands: Theorema van Bayes
Piemontèis: Fórmola ëd Bayes
português: Teorema de Bayes
Simple English: Bayes' theorem
српски / srpski: Бајесова теорема
Basa Sunda: Téoréma Bayes
svenska: Bayes sats
Türkçe: Bayes teoremi
українська: Теорема Баєса
Tiếng Việt: Định lý Bayes