Unit circle

The Unit Circle can be used to model every Trigonometric function.

In mathematics, a unit circle is a circle with a radius of 1. The equation of the unit circle is ${\displaystyle x^{2}+y^{2}=1}$. The unit circle is centered at the Origin, or coordinates (0,0). It is often used in Trigonometry.

• trigonometric functions in the unit circle

Trigonometric functions in the unit circle

In a unit circle, where ${\displaystyle t}$ is the angle desired, ${\displaystyle x}$ and ${\displaystyle y}$ can be defined as ${\displaystyle \cos(t)=x}$ and ${\displaystyle \sin(t)=y}$. Using the function of the unit circle, ${\displaystyle x^{2}+y^{2}=1}$, another equation for the unit circle is found, ${\displaystyle \cos ^{2}(t)+\sin ^{2}(t)=1}$. When working with trigonometric functions, it is mainly useful to use angles with measures between 0 and ${\displaystyle \pi \over 2}$ radians, or 0 through 90 degrees. It is possible to have higher angles than that, however. Using the unit circle, two identities can be found: ${\displaystyle \cos(t)=\cos(2\cdot \pi k+t)}$ and ${\displaystyle sin(t)=\sin(2\cdot \pi k+t)}$ for any integer ${\displaystyle k}$.

The unit circle can substitute variables for trigonometric functions.
Other Languages
العربية: دائرة وحدة
Bân-lâm-gú: Tan-ūi-îⁿ
bosanski: Jedinični krug
Deutsch: Einheitskreis
English: Unit circle
Esperanto: Unuocirklo
français: Cercle unité
한국어: 단위원
Bahasa Indonesia: Lingkaran satuan
Кыргызча: Бирдик айлана
македонски: Единична кружница
монгол: Нэгж тойрог
Nederlands: Eenheidscirkel

norsk nynorsk: Einingssirkel
português: Círculo unitário
slovenščina: Enotska krožnica
српски / srpski: Јединични круг
srpskohrvatski / српскохрватски: Jedinični krug
svenska: Enhetscirkel
Türkçe: Birim çember
українська: Одиничне коло
ייִדיש: איינס קרייז