Собственный вектор

Синим цветом обозначен собственный вектор. Он, в отличие от красного, при деформации (преобразовании) не изменил направление и длину, поэтому является собственным вектором, соответствующим собственному значению . Любой вектор, параллельный синему вектору, также будет собственным, соответствующим тому же собственному значению. Множество всех таких векторов (вместе с нулевым) образует собственное подпространство.

Собственный вектор — понятие в линейной алгебре, определяемое для квадратной матрицы или произвольного линейного преобразования как ненулевой вектор, умножение матрицы на который или применение к которому преобразования даёт коллинеарный вектор — тот же вектор, умноженный на некоторое скалярное значение, называемое собственным числом матрицы или линейного преобразования.

Понятия собственного вектора и собственного числа являются одними из ключевых в линейной алгебре, на их основе строится множество конструкций. Множество всех собственных векторов линейного преобразования называется собственным подпространством, множество всех собственных значений матрицы или линейного преобразования — спектром матрицы или преобразования.

другие языки