Spline

Question book.svg
Esta página ou secção não cita fontes confiáveis e independentes, o que compromete sua credibilidade (desde maio de 2010). Por favor, referências e insira-as corretamente no texto ou no rodapé. Conteúdo sem fontes poderá ser removido.
Encontre fontes: Google (notícias, livros e acadêmico)
Spline de Bézier com nós (A,D) e pontos de controle (A,B,C,D).

Um spline é uma curva definida matematicamente por dois ou mais pontos de controle. Os pontos de controle que ficam na curva são chamados de nós. Os demais pontos definem a tangente à curva em seus respectivos nós. Por exemplo, a curva de Bézier definida pelos pontos (A, B, C e D) é delimitada pelos nós A e D e nesses nós, a curva é tangente ao vetores AB e DC respectivamente. Variando as posições dos pontos B e C, a curva apenas varia sua inclinação, mas continua passando pelos pontos A e D.

Os splines podem ser divididos em duas categorias:

  • Splines de interpolação que passam por todos os pontos de controle
  • Splines de aproximação que passam perto de todos os pontos de controle

Splines de aproximação

Usualmente, os splines de aproximação são curvas suaves, dado que as splines de interpolação podem ter "lombas" perto dos nós. Na imagem, a curva que passa através de A, B, C e D é um spline interpolador (especificamente, um spline linear) e a curva que passa através de A e D, mas não por B e C, é um spline de aproximação (especificamente, um spline Bézier).

En otros idiomas
català: Spline
čeština: Spline
Deutsch: Spline
Esperanto: Splajno
español: Spline
فارسی: اسپلاین
français: Spline
עברית: Spline
magyar: Spline
italiano: Funzione spline
қазақша: Сплайн
македонски: Сплајн
Nederlands: Spline
norsk: Spline
русский: Сплайн
slovenščina: Zlepek
српски / srpski: Сплајн
svenska: Spline
українська: Сплайн
中文: 样条函数