Satélite artificial

Vídeo mostrando alguns satélites da NASA orbitando a Terra.

Satélite artificial é o nome de qualquer corpo feito pelo Homem e colocado em órbita ao redor da Terra ou de qualquer outro corpo celeste. Até hoje já foram efetuados milhares de lançamentos desses corpos ao espaço, mas a maioria já está desativada. Quando ocorrem falhas no lançamento ou no próprio satélite, partes dos mesmos podem ficar orbitando o planeta por tempo indefinido, formando o lixo espacial. Tecnicamente, esses objetos também são satélites, embora o termo por si só seja usado para se referir ao aparelho que foi colocado em órbita para exercer uma função específica. [1]

As primeiras ideias sobre satélites surgiram no século XVIII com as teorias sobre gravitação de Isaac Newton. No século seguinte diversos escritores de ficção científica propunham novos conceitos sobre satélites, até que os cientistas perceberam a real possibilidade e utilidade de tais corpos em órbita. Com base em diversos estudos e testes, foi lançado pelos soviéticos em 1957 o primeiro satélite artificial da história, o Sputnik 1, o que, em tempos de Guerra Fria, marcou o início da corrida espacial. Desde então foram lançados milhares de satélites de diversos tipos: satélites de comunicações, astronômicos, militares, meteorologicos, entre outros. [2]

Apesar dos satélites terem as mais variadas funções, geralmente eles possuem partes em comum. Todos precisam de energia, por isso a maioria conta com painéis solares e também antenas para comunicação, através das quais é feita a emissão e recepção de dados. Grande parte dos satélites operacionais em órbita são destinados a telecomunicações, por meio da transmissão de sinal de TV, rádio, ligações telefônicas e outros serviços. A principal vantagem da utilização dos satélites é a cobertura global que podem oferecer.

Dependendo da função, os satélites são colocados em órbitas de diferentes altitudes e formatos. Os satélites de comunicação, por exemplo, encontram-se principalmente na órbita geoestacionária, a uma altitude de cerca de trinta e seis mil quilômetros, enquanto satélites que fotografam a superfície do planeta ficam entre cem e duzentos quilômetros acima da superfície. Por vezes é possível observar um satélite a olho nu quando este reflete a luz solar, o que faz com que pareça uma estrela vista da Terra. A lua e alguns de vários planetas do sistema solar possuem satélites artificiais em órbita, enviados para estudar as características físicas dos corpos destes.

Ciclo de uso dos satélites

Montagem

Preparação para um teste térmico de um satélite.

Todo satélite carrega instrumentos especiais para executar sua função no espaço. Um satélite de observação do universo, por exemplo, carrega um telescópio. Além desses instrumentos específicos, todos os satélites têm subsistemas básicos, ou seja, grupos de aparelhos que fazem os instrumentos trabalharem juntos e manter o satélite em funcionamento. Um exemplo importante é o subsistema de energia, responsável por distribuir a energia captada nos painéis solares e transformada em energia elétrica para todos os outros sistemas. Entretanto, cada sistema é criado, montado e testado individualmente. Depois de concluídos os testes, cada um é instalado no satélite de uma vez até que se complete a montagem e todos os sistemas estejam integrados. Posteriormente, o satélite é submetido a testes em condições que reproduzem àquelas a que se encontrarão no espaço. Somente depois de passar por todos os testes rigorosos estabelecidos é que o satélite pode ser lançado. [3]

Lançamento

Vídeo do lançamento de um satélite.

Os satélites são colocados em órbita por meio de foguetes e naves espaciais (que são chamados de veículos de lançamento), lançados de diversos centros de lançamentos localizados em diversos países. Os veículos de lançamento podem utilizar combustíveis sólidos ou líquidos. Os foguetes podem carregar até três ou quatro satélites de uma só vez. [4]

Geralmente os foguetes possuem três estágios que vão se separando até que se chegue ao espaço. O primeiro estágio contém o combustível necessário para que o foguete e o satélite, que pesam centenas de toneladas, cheguem ao espaço. Quando essa primeira etapa é concluída, essa parte do foguete é desprendida e geralmente cai no oceano ou em um deserto, dependendo da área em que foi lançada. Imediatamente o segundo estágio, que é um foguete menor, começa a queimar seu combustível para que se chegue à órbita desejada em torno da Terra. Quando o combustível acaba, esta parte também é liberada e cai na Terra. Por fim o terceiro estágio contém uma espécie de cápsula onde está o satélite. Uma vez atingida a órbita necessária, essa cápsula libera o satélite que abre seus painéis solares e suas antenas e começa a executar a função para qual foi criado. [5]

A localização do centro de lançamento é um fator essencial na escolha do local de lançamento. Quanto mais próximo o centro de lançamento estiver da linha do Equador, maior será o "impulso" dado quando o foguete seguir no mesmo sentido da rotação do planeta. O movimento do planeta fornece aos foguetes uma velocidade adicional (que no Equador é de cerca de 1 660 quilômetros por hora), permitindo assim a economia de combustível. Por isso os países que vão construir tais centros procuram fazê-los nas menores latitudes possíveis, ou seja, mais próximo do Equador. O centro de lançamento de Cabo Canaveral, por exemplo, fica no extremo sul dos Estados Unidos, enquanto o Centro Espacial de Kourou, na Guiana Francesa fica bem próximo ao paralelo. Por motivos de segurança, os centros de lançamento devem estar localizados em áreas pouco habitadas, por causa da queda dos estágios do foguete que são liberados durante o lançamento, por isso, os locais mais utilizados para colocar satélites em órbita estão localizados próximo ao oceano ou em desertos pouco habitados. [6] [7]

Apesar de mais de quarenta países possuírem satélites em órbita, somente oito deles possuem capacidade de lançamento. São estes Rússia, Estados Unidos, China, França, Índia, Japão, Israel e Irão, por serem os únicos com tecnologia próprias para colocar satélites em órbita. Os principais motivos disso são as dificuldades técnicas e financeiras. Outros países como Brasil e Coreia do Sul possuem projetos avançados para lançar seus próprios satélites, mas ainda não o fizeram ou tiveram problemas em tentativas. A colocação de satélites em órbita também tem uma importância comercial, enquanto países como China e Índia concorrem com os Estados Unidos com lançamentos mais baratos e tecnologia avançada, procurando se tornarem novas superpotências espaciais. [8] [9]

Em órbita

Experimento mental de Newton ,onde o canhão lança vários projéteis com velocidades diferentes. (em A e B, o objeto cai na superfície, em C ele descreve uma órbita circular, em D ele descreve uma órbita elíptica e em E ele escapa da influência gravitacional da Terra.

Para explicar o movimento dos satélites é preciso fazer o experimento mental que Isaac Newton fez no século XVIII. Newton imaginou um canhão no topo de uma montanha apontado na direção paralela à superfície da Terra. Ignorando-se o efeito da atmosfera, o projétil iria até uma certa distância e depois cairia na Terra. Lançando-se o mesmo projétil com velocidade maior, ele cairira a uma distância maior. Aumentando-se cada vez mais a velocidade do projétil, chegaria um ponto em que o projétil já não mais atingiria a superfície do planeta, e descreveria uma órbita circular. Mas isso não significa que a gravidade não está agindo, pois é ela que faz a trajetória ser curva (diz-se que o projétil está em contínua queda livre). Em outras palavras, a gravidade da Terra faz com que a trajetória seja curva e, se a velocidade for suficiente, esta curva nunca atinge a superfície do planeta. Se a velocidade do projétil for ainda maior, ele passará a descrever uma órbita elíptica e, se a velocidade for ainda maior, o projétil escapa da influência da gravidade do planeta. [10] [11]

O cientista alemão Johannes Kepler formulou, no século XVII, as três leis do movimento planetário. A primeira lei, que diz que todos os planetas orbitam o Sol numa trajetória elíptica, sendo que o Sol se localiza em um dos focos dessa elipse, pode ser aplicada aos satélites sendo que o planeta ocupa um dos focos dessa elipse. A segunda lei que diz que uma linha imaginária feita do centro do Sol ao centro do planeta varre áreas iguais em intervalos de tempo iguais é também aplicada aos satélites artificiais, pois no perigeu a velocidade do satélite é maior e no apogeu a velocidade é menor. E por fim, a terceira lei de Kepler, que afirma que a razão entre os quadrados dos períodos dos planetas é igual à razão dos cubos das distâncias médias ao Sol é obedecida pelos satélites que orbitam planetas ou qualquer objeto celeste. [10]

Elementos orbitais

Ver artigo principal: Elementos orbitais

Para se determinar a órbita de um satélite, pelo menos sete elementos orbitais são necessários. Esses números são chamados elementos orbitais do satélite, ou elementos Keplerianos. Por meio desses dados define-se uma elipse, sua orientação em relação à Terra e define a posição do satélite num dado instante de tempo. No modelo Kepleriano, as órbitas são elipses de forma e orientação constante, estando a Terra em um de seus focos. Mas no mundo real as coisas são diferentes, e os satélites estão sujeitos a fatores que alteram sua órbita, como a variação do campo gravitacional (pois a Terra não é uma esfera perfeita) e o arrasto causado pela atmosfera. [12]

Elemento orbital [13] Definição
Elementos orbitais de um satélite orbitando a Terra
Elementos orbitais (vista paralela ao plano equatorial)
Época Simplesmente um instante de tempo
Semieixo maior (a) Define o tamanho da órbita
Excentricidade orbital (e) Define a forma da órbita
Inclinação (i) Define a orientação da órbita em relação ao Equador.
Argumento do perigeu (ω) Define o ponto em relação ao Equador terrestre no qual o perigeu acontece.
Ascensão reta do nodo ascendente (Ω) Define o ponto onde a órbita do satélite cruza com o plano do Equador.
Anomalia média/verdadeira (ν) Define a posição do satélite em sua órbita em relação ao perigeu.

Perturbações e manutenção em órbita

Existem diversas forças e fatores que alteram a órbita de um satélite e para que o mesmo continue exercendo suas funções normais, é necessária a correção da trajetória. Alguns motivos de perturbação são causados por forças gravitacionais. A Terra não é uma esfera perfeita (na verdade o planeta tem um formato geoide) e por isso a aceleração gravitacional pode ser ligeiramente maior em algumas regiões e um pouco menor em outras, o que altera a trajetória do corpo que está orbitando o planeta. Outros corpos, como o sol e a lua também exercem influência gravitacional sobre os satélites, fazendo com que se desviem de suas órbitas originais, dando origem ao efeito do terceiro corpo. [14] [15]

Outros fatores que não são de origem gravitacional devem ser considerados quando um satélite é colocado em órbita. O principal deles é o arrasto causado pela atmosfera terrestre, que é causado pela colisão dos satélites com as moléculas do ar, que faz com que o primeiro perca velocidade e, consequentemente, altitude. Esse efeito acontece principalmente sobre os satélites da órbita terrestre baixa, onde a densidade da atmosfera e a velocidade do corpo que orbita o planeta é maior. A radiação eletromagnética emitida pelo sol dá origem a um efeito chamado de pressão de radiação, que consiste na força que a incidência dessas ondas exercem sobre um corpo, e essa força dá origem a um movimento que desvia o satélite de sua órbita original. A intensidade dessa força é diretamente proporcinal a área e inversamente proporcional ao peso do satélite, por isso, satélites maiores e mais leves são mais afetados por esse efeito. [14] [15]

Outra razão para alterar a trajetória da órbita de um satélite são os destroços espaciais. A colisão entre dois satélites em 2009, por exemplo, liberou pelo menos 2 500 peças no espaço, que se juntaram aos mais de dezoito mil objetos que estão em órbita e são monitorados constantemente, para evitar uma nova colisão que causaria a liberação de ainda mais destroços espaciais. [16] As manobras geralmente são feitas com propulsores nos satélites, cujo principal propelente utilizado é a hidrazina, que os direcionam de volta à orbita pretendida ou para uma nova, conforme os comandos recebido das centrais de controle. Essas manobras acontecem seguindo-se dois eixos principais de referência. O primeiro deles são as manobras perpendiculares ao plano orbital, que são utilizadas para mudar a inclinação da órbita e o segundo são as manobras realizadas no plano orbital, que acelera ou desacelera o satélite, colocando-o numa órbita mais alta ou mais baixa, respectivamente. [17] [18]

Rota no solo

Projeção da rota da Estação Espacial Internacional sobre um mapa com a Projeção de Mercator

A projeção da órbita de um satélite na superfície da Terra é chamada rota no solo. Num dado instante de tempo imagina-se uma linha que liga o centro do planeta ao satélite. Quando essa linha intercepta a superfície esférica da Terra, encontra-se um ponto dessa rota, que pode ser definido a partir de uma latitude e de uma longitude. Enquanto o satélite se move, o traço formado pelo conjunto desses pontos forma uma rota no solo. Os satélites da órbita terrestre baixa (como a Estação Espacial Internacional), por exemplo, atingem uma latitude máxima e mínima enquanto orbitam o planeta, e por isso a curva formada por um desses satélites lembra uma curva senoidal quando feita sobre um mapa com a projeção de Mercator. [19]

Fim das operações

Quando um satélite deixa de executar suas funções, ele deve ser retirado de órbita ou colocado em uma órbita que não ofereça riscos a outros satélites. Para satélites na órbita terrestre baixa, o satélite deve ser colocado em uma órbita que com o arrasto causado pela atmosfera, faça com que o satélite caia na Terra antes de 25 anos. Geralmente durante a reentrada o satélite explode, e o risco de uma peça atingir um ser humano é menor do que um em 10 000. Outra opção é colocar o satélite numa órbita destinada a satélites que já não operam mais. Foram estabelecidas quatro órbitas para essa função que ficam em altitudes menos utilizadas por outros satélites. [20]

En otros idiomas
Afrikaans: Satelliet
العربية: قمر اصطناعي
azərbaycanca: Süni peyk
تۆرکجه: مصنوعی قمر
беларуская (тарашкевіца)‎: Штучны спадарожнік Зямлі
भोजपुरी: उपग्रह
brezhoneg: Loarell
čeština: Umělá družice
Cymraeg: Lloeren
dansk: Satellit
ދިވެހިބަސް: ސެޓެލައިޓް
English: Satellite
فارسی: ماهواره
føroyskt: Fylgisveinur
Nordfriisk: Satellit
furlan: Satelit
Frysk: Satellyt
贛語: 衛星
Gàidhlig: Saideal fuadain
עברית: לוויין
हिन्दी: उपग्रह
hrvatski: Umjetni satelit
magyar: Műhold
Հայերեն: Արբանյակ
Bahasa Indonesia: Satelit
íslenska: Gervitungl
日本語: 人工衛星
Patois: Satilait
Basa Jawa: Satelit
한국어: 인공위성
Lëtzebuergesch: Satellit (Raumfaart)
Limburgs: Kónsmaon
मैथिली: उपग्रह
Māori: Āmiorangi
македонски: Вештачки сателит
मराठी: उपग्रह
Bahasa Melayu: Satelit
မြန်မာဘာသာ: ဂြိုဟ်တု
Plattdüütsch: Satellit (Ruumfohrt)
नेपाली: उपग्रह
Nederlands: Kunstmaan
norsk nynorsk: Satellitt
Novial: Satelite
ଓଡ଼ିଆ: ଉପଗ୍ରହ
ਪੰਜਾਬੀ: ਉਪਗ੍ਰਹਿ
پښتو: سپوږمکۍ
Scots: Satellite
srpskohrvatski / српскохрватски: Umjetni satelit
Simple English: Satellite (artificial)
slovenčina: Umelá družica
slovenščina: Satelit
Soomaaliga: Dayax gacmeed
српски / srpski: Вештачки сателит
Basa Sunda: Satelit
svenska: Satellit
Kiswahili: Satelaiti
తెలుగు: ఉపగ్రహము
тоҷикӣ: Моҳвора
Tagalog: Buntabay
Türkçe: Yapay uydu
татарча/tatarça: Cirneñ yasalma iärçene
ئۇيغۇرچە / Uyghurche: سۈنئىي ھەمراھ
українська: Штучний супутник
Tiếng Việt: Vệ tinh
Winaray: Satelayt
吴语: 人造卫星
ייִדיש: סאטעליט
中文: 人造衛星
粵語: 人造衞星