Harmônica

Som
Onda
Amplitude
Fase
Frente de onda
Frequência fundamental
Harmônica
Frequência
Hertz
Altura tonal
Oitava
Velocidade do som
Efeito Doppler
Disambig grey.svg Nota: Para outros significados de Harmónica, veja Harmónica (desambiguação).

Em acústica e telecomunicações, uma harmônica (português brasileiro) ou harmónica (português europeu) de uma onda é uma frequência específica de vibração que tem a propriedade de causar o fenômeno de ressonância. A tais frequências é dada a denominação frequências de ressonância. Por definição, a frequência que causa a primeira ressonância de uma onda é chamada de frequência fundamental, e dela provêm os demais harmônicos.[1]

Os harmônicos têm uma forte aplicação na música, pois eles definem as frequências do som (uma onda mecânica longitudinal) audível que correspondem às notas da escala musical (mais precisamente, às notas do que chamamos série harmônica). Partindo-se da frequência fundamental, é possível obter frequências, cada uma delas correspondente à frequência de determinada nota musical da série. Por esse motivo, o conjunto de todos os modos de oscilação possíveis é chamado de série harmônica.

Definição e contextualização

As duas principais circunstâncias em que os harmônicos são visualizados mais facilmente são no comportamento de cordas vibrantes e de ondas em tubos sonoros. Isso se dá pelo fato de, em casos com esses, a onda encontrar-se limitada a um espaço fixo, o que provoca reflexões e interferências. Esse é o princípio das ondas estacionárias, correspondentes ao estudo dos harmônicos, formadas por interferência de ondas que se propagam em sentidos opostos.[2]

Tomando como exemplo uma corda de determinado comprimento e presa nas duas extremidades, pode-se facilmente observar o comportamento estacionário da onda ao provocar uma instabilidade na corda. A onda criada propaga-se pela corda até atingir as extremidades, e então, é refletida, provocando interferência com ela própria. Dessa maneira, é possível ter a configuração de onda estacionária dada pela imagem.

Esquematização do comportamento de uma onda estacionária (preta). As duas ondas que a formam (azul e vermelha) interferem entre si e formam a onda resultante. Pelo fato das extremidades fixas, as ondas (azul e vermelha) são reflexões da mesma onda. Ao interferirem entre si, formam a onda estacionária (preta). Os pontos vermelhos representam os nós (ou nodos) da onda resultante.

Para o campo dos harmônicos, a onda estacionária também é chamada de modo de oscilação. O fato é que tais modos de oscilação só são formados quando a onda tem determinadas frequências e, nesse caso, ao formar-se a onda estacionária, é dito que a onda sofreu ressonância. Apenas frequências específicas, chamadas frequências de ressonância, fazem com que a onda estacionária seja formada e, consequentemente, haja ressonância. Caso a frequência seja diferente, a interferência das ondas refletidas não será tal a formar a onda estacionária, mas sim pequenas (muitas vezes, imperceptíveis) vibrações aleatórias no meio de propagação.[1]

Esse princípio é facilmente observável em cordas vibrantes com as duas extremidades fixas. Em tubos sonoros, entretanto, pode haver uma ou duas extremidades abertas. Porém, a onda continua sendo refletida na extremidade do tubo, mesmo que não de forma completa.[1] E, da mesma forma, ao interferir com a outra onda, o som resultante pode entrar em ressonância ao se formar uma onda estacionária, apenas em determinadas frequências.

Denominação

A série harmônica ou espectro de ressonância, , é o conjunto de todas as frequências de ressonância das ondas que, ao interferirem após uma reflexão, sofrem ressonância. No campo da música, a série harmônica também corresponde às frequências, porém inclui sua relação com as notas musicais em diferentes alturas da extensão do som.[3]

O número harmônico, , é o índice de determinada frequência. É conveniente dizer que é o número referente ao n-ésimo harmônico. Assim, refere-se ao primeiro harmônico, refere-se ao segundo harmônico, e assim por diante.

A frequência fundamental é dada por , a frequência de ressonância do primeiro harmônico (ou, simplesmente, primeiro harmônico). Na música, uma das frequências fundamentais é dada por , cujo som corresponde ao Lá1, a décima quinta tecla branca do piano moderno. As demais frequências são dadas por múltiplos inteiros dessa frequência: 220 Hz, 330 Hz, 440 Hz e assim por diante. Essas frequências formam a série harmônica musical e guardam interessantes propriedades intervalares entre si, campo de estudo da teoria harmônica. Não existe apenas uma série harmônica na música: qualquer série pode ser formada partindo de uma frequência fundamental (ou som gerador).[4][5]

Nós e antinós

Para o estudo dos harmônicos, é importante ressaltar que os nós (ou nodos) de uma onda são pontos onde o deslocamento transversal é nulo. Os antinós (ou antinodos) são pontos de deslocamento transversal máximo.[3] Ao analisar as extremidades de uma onda estacionária, verifica-se que, se a extremidade é fixa, nela, a onda apresenta um nó; se a extremidade é livre, nela, a onda apresenta um antinó.[1]

Essa abordagem será útil na concepção dos diferentes casos de harmônicos, explicitada a seguir.

Comportamento das ondas estacionárias com extremidades fixas. A distância entre dois nós consecutivos vai sendo diminuída a cada harmônico, na proporção .
En otros idiomas
العربية: توافق
català: Harmònic
Deutsch: Harmonische
English: Harmonic
Esperanto: Harmono
español: Armónico
eesti: Osaheli
فارسی: هارمونیک
Gaeilge: Armónach
galego: Harmónico
Kreyòl ayisyen: Amoni
Bahasa Indonesia: Harmonisa
日本語: 高調波
Nederlands: Harmonische
norsk nynorsk: Harmonisk bølgje
srpskohrvatski / српскохрватски: Alikvotni tonovi
Simple English: Harmonic
slovenščina: Flažolet
српски / srpski: Аликвотни тонови
українська: Гармоніки
中文: 谐波