Rozkład Maxwella

Rozkład Maxwella dla tlenu dla trzech temperatur (–100 °C, temperatura pokojowa i 600 °C). Wartość funkcji odpowiada liczbie cząsteczek spośród 1 miliona cząsteczek, jaka będzie poruszać się z prędkością v±0,5 m/s.
Rozkład Maxwella dla tlenu, butanu, amoniaku i dwutlenku węgla w temperaturze pokojowej (20 °C). Wartość funkcji odpowiada liczbie cząsteczek spośród 1 miliona cząsteczek, jaka będzie poruszać się z prędkością v±0,5 m/s.

Rozkład Maxwella – wzór określający rozkład prędkości cząstek gazu doskonałego, w którym poruszają się one swobodnie i nie oddziałują ze sobą, z wyjątkiem bardzo krótkich zderzeń sprężystych, w których mogą wymieniać pęd i energię kinetyczną, ale nie zmieniają swoich stanów wewnątrzcząsteczkowych. Cząstka w tym kontekście oznacza zarówno atomy, jak i cząsteczki.

Rozkład ten ma postać

dąży do zera, gdy maleje, udział cząsteczek o bardzo małych prędkościach jest także znikomy[1].

Parametry rozkładu prędkości

Rozkład prędkości cząsteczek gazu można scharakteryzować trzema parametrami: prędkość najbardziej prawdopodobna, prędkość średnia i prędkość średnia kwadratowa[2][3].

Prędkość najbardziej prawdopodobna to taka prędkość , dla której wartość jest największa.

Prędkość średnia określa przeciętną prędkość z jaką poruszają się cząsteczki w układzie. Ze względu na to, że rozkład Maxwella jest asymetryczny (prawostronnie skośny) prędkość średnia jest większa niż prędkość najbardziej prawdopodobna. Krzywa maxwellowska ma „ogon”, który rozciąga się w stronę wysokich temperatur.

Prędkość średnia jest średnią arytmetyczną z prędkości wszystkich cząsteczek:

Prędkość średnia kwadratowa jest pierwiastkiem kwadratowym ze średniej arytmetycznej kwadratów prędkości:

Średnia prędkość kwadratowa jest miarą energii kinetycznej cząsteczek.

Z kinetycznej teorii gazów wynika, że

a więc energia kinetyczna cząsteczki zależy wyłącznie od temperatury, oraz ze względu na to, że zgodnie z Drugą zasadą dynamiki Newtona

otrzymujemy

Jest to fundamentalny wniosek teorii kinetycznej, który łączy wprost prędkość cząsteczek z temperaturą i masą. Wynika z niego, że

średnia prędkość kwadratowa cząsteczek jest proporcjonalna do pierwiastka kwadratowego z temperatury[1].

Jeśli temperatura wzrośnie dwa razy (w skali Kelvina), to średnia prędkość kwadratowa cząsteczki wzrośnie raza.

Poza tym zachodzi:

Inne języki