Egenvektor

I matematikk er en egenvektor til en lineær transformasjon T: VV et element i vektorrommet V som ikke endrer retning når den avbildes av transformasjonen. Egenverdien er et uttrykk for hvor mye egenvektoren strekkes av den lineære transformasjonen. En egenverdi og en egenvektor opptrer i samhørende par, og en gitt lineær transformasjon kan ha ingen eller mange slike par av egenverdier/egenvektorer.

Begrepet egenløsning blir brukt til å referere til både egenverdi og egenvektor. Dersom vektorrommet V er et rom av funksjoner brukes også navnet egenfunksjon synonymt med egenvektor. Retninger bestemt av egenvektorer kalles av og til egenretninger. Å finne sammenhørende verdier for egenverdi og egenvektor kalles å løse et egenverdiproblem.

Egenverdier og egenvektorer spiller en svært viktig rolle i studiet av lineære transformasjoner, blant annet for å kartlegge hvilke egenskaper til transformasjonen som er uavhengig av valg av basis i definisjonsområdet og verdimengden. Mange problemstillinger i anvendt matematikk og fysikk kan formuleres som egenverdiproblem, for eksempel beskrivelse av svingninger i en membran.

Andre språk
íslenska: Eigen gildi
беларуская: Уласны вектар
беларуская (тарашкевіца)‎: Уласныя лікі, вэктары і прасторы
한국어: 고윳값
Bahasa Indonesia: Nilai dan vektor Eigen
עברית: ערך עצמי
日本語: 固有値
slovenščina: Lastna vrednost
українська: Власний вектор
اردو: ویژہ قدر
Tiếng Việt: Vectơ riêng
粵語: 特徵向量