സൂര്യൻ

സൂര്യൻ Sun symbol.svg
നിരീക്ഷണവിവരം
ഭൂമിയിൽ നിന്നുള്ള
ശരാശരി ദൂരം
1.496×108 കി.മീ
പ്രകാശവേഗത്തിൽ 8.317 മിനിറ്റ് (499 സെക്കന്റ്)
ദൃശ്യകാന്തിമാനം (V)−26.74 [1]
കേവലകാന്തിമാനം4.85 [2]
സ്പെക്ട്രൽ വർഗ്ഗീകരണംG2V
മെറ്റാലിസിറ്റിZ = 0.0177 [3]
കോണീയ വ്യാസം31.6′ – 32.7′ [4]
ഭ്രമണപഥത്തിന്റെ സവിശേഷതകൾ
ക്ഷീരപഥകേന്ദ്രത്തിൽ നിന്നുള്ള ദൂരം~2.5×1017 കി.മീ
26000 light-years
പരിക്രമണകാലം(2.25–2.50)×108 a
പ്രവേഗം~220 km/s
(orbit around the center of the Galaxy)

~20 km/s
(relative to average velocity of other stars in stellar neighborhood)
Physical characteristics
ശരാശരി വ്യാസം1.392×106 കി.മീ [1]
109 × Earths
മധ്യരേഖാ ആരം6.955×105 കി.മീ [5]
109 × Earth[5]
മധ്യരേഖാ വൃത്തപരിധി4.379×106 കി.മീ [5]
109 × Earth[5]
Flattening9×10−6
ഉപരിതല വിസ്തീർണ്ണം6.0877×1012 km2 [5]
11990 × Earth[5]
വ്യാപ്തം1.412×1018 km3 [5]
1300000 × Earth
പിണ്ഡം1.9891×1030 കി.g [1]
332900 × Earth[5]
ശരാശരി സാന്ദ്രത1.408×103 kg/m3 [1][5][6]
വിവിധ സാന്ദ്രതകൾകാമ്പ്: 1.5×105 kg/m3
പ്രഭാമണ്ഡലം (താഴ്ന്നത്): 2×10−4 kg/m3
വർണ്ണമണ്ഡലം (താഴ്ന്നത്): 5×10−6 kg/m3
(ശരാശരി) കൊറോണ: 1×10−12 kg/m3 [7]
മധ്യരേഖാ ഉപരിതല ഗുരുത്വം274.0 m/s2 [1]
27.94 
28 × Earth[5]
നിഷ്ക്രമണപ്രവേഗം
(ഉപരിതലത്തിലേത്)
617.7 km/s [5]
55 × Earth[5]
ഉപരിതലതാപനില
5778 K [1]
കൊറോണയുടെ താപനില~5×106 K
കാമ്പിലെ
താപനില
~15.7×106 K [1]
Luminosity (Lsol)3.846×1026 W [1]
~3.75×1028 lm
~98 lm/W efficacy
Mean Intensity (Isol)2.009×107 W·m−2·sr−1
Rotation characteristics
Obliquity7.25° [1]
(to the ecliptic)
67.23°
(to the galactic plane)
ഉത്തരധ്രുവത്തിന്റെ[8]
റൈറ്റ് അസൻഷൻ
286.13°
19h 4min 30s
ഉത്തരധ്രുവത്തിന്റെ
ഡെക്ലിനേഷൻ
+63.87°
63°52' North
സിഡീരിയൽ ഭ്രമണകാലം
(at 16° latitude)
25.38 days [1]
25d 9h 7min 13s [8]
(at equator)25.05 days [1]
(at poles)34.3 days [1]
മധ്യരേഖാ
ഭ്രമണപ്രവേഗം
7.189×103 km/h [5]
പ്രഭാമണ്ഡലനിർമ്മിതി (പിണ്ഡാടിസ്ഥാനത്തിൽ)
ഹൈഡ്രജൻ73.46%[9]
ഹീലിയം24.85%
ഓക്സിജൻ0.77%
കാർബൺ0.29%
ഇരുമ്പ്0.16%
ഗന്ധകം0.12%
നിയോൺ0.12%
നൈട്രജൻ0.09%
സിലിക്കൺ0.07%
മഗ്നീഷ്യം0.05%

ഭൂമി ഉൾപ്പെടുന്ന ഗ്രഹതാരസഞ്ചയമായ സൗരയൂഥത്തിന്റെ കേന്ദ്രമാണ്‌ സൂര്യൻ എന്ന നക്ഷത്രം. ഏതാണ്ട് 13,92,684 കിലോമീറ്ററാണു് സൂര്യന്റെ വ്യാസം.[10] ഇത് ഏതാണ്ട് ഭൂമിയുടെ വ്യാസത്തിന്റെ 109 മടങ്ങ് വലിപ്പം വരും. സൗരയൂഥത്തിന്റെ ആകെ പിണ്ഡത്തിന്റെ 99.86 ശതമാനവും സൂര്യനിലാണ്‌. ഇത് ഏതാണ്ട് 1.989×10കി.ഗ്രാം വരും. ഇത് ഭൂമിയുടെ പിണ്ഡത്തിന്റെ 330,000 മടങ്ങ് വരും.[11] പിണ്ഡത്തിന്റെ ബാക്കിവരുന്ന ഭാഗം ഗ്രഹങ്ങൾ, ഛിന്നഗ്രഹങ്ങൾ, ഉൽക്കകൾ, ധൂമകേതുക്കൾ ധൂളികൾ എന്നിവയിലാണ്‌‌‌.[12] സൗരപിണ്ഡത്തിന്റെ നാലിൽ മൂന്നുഭാഗവും ഹൈഡ്രജനാണ്‌, ബാക്കിയുള്ളതിൽ ഭൂരിഭാഗവും ഹീലിയവുമാണ്‌. രണ്ട് ശതമാനത്തിൽ താഴെയേ ഇരുമ്പ്, ഓക്സിജൻ, കാർബൺ, നിയോൺ എന്നിവയടക്കമുള്ള മറ്റ് മൂലകങ്ങൾ വരുന്നുള്ളൂ.[13]

ഭൂമിയുടെ അന്തരീക്ഷത്തിൽ സംഭവിക്കുന്ന വിസരണം മൂലം സൂര്യൻ മഞ്ഞനിറത്തിൽ കാണപ്പെടുന്നുവെങ്കിലും സൂര്യന്റെ യഥാർത്ഥനിറം വെള്ളയാണ്‌.[14] നക്ഷത്രങ്ങളുടെ സ്പെക്ട്രൽ വർഗ്ഗീകരണമനുസരിച്ച് സൂര്യനെ G2V എന്ന സ്പെക്ട്രൽ ക്ലാസിലാണ്‌ ഉൾപ്പെടുത്തിയിരിക്കുന്നത്, അതുപ്രകാരം സൂര്യനെ ഒരു മഞ്ഞ നക്ഷത്രമായി സൂചിപ്പിക്കുന്നു, സൂര്യന്റെ വികിരണങ്ങളിൽ ഭൂരിഭാഗവും ദൃശ്യവർണ്ണരാജിയിലെ മഞ്ഞ-പച്ച എന്നിവയ്ക്കിടയിലുള്ള വികിരണങ്ങളായതിനാലാണിത്.[15] ഇവിടെ G2 സൂചിപ്പിക്കുന്നത് ഉപരിതലതാപനില 5,780 K (5,510 °C) എന്നാണ്‌, V (റോമൻ അക്കം) സൂചിപ്പിക്കുന്നത് മറ്റ് ഭൂരിഭാഗം നക്ഷത്രങ്ങളെപ്പോലെ ഹൈഡ്രജൻ അണുകേന്ദ്രങ്ങളെ ഹീലിയമാക്കുന്ന പ്രക്രിയയിലൂടെ ഊർജ്ജോല്പാദനം നടത്തുന്ന മുഖ്യശ്രേണിയിൽപ്പെട്ട ഒരു നക്ഷത്രം എന്നാണ്‌. അപ്രധാനവും ചെറുതുമായ ഒരു നക്ഷത്രമാണെങ്കിലും സൂര്യൻ അതിന്റെ താരാപഥമായ ക്ഷീരപഥത്തിലെ 85 ശതമാനത്തോളം നക്ഷത്രങ്ങളേക്കാളും തിളക്കമുള്ളതാണ്‌, ക്ഷീരപഥത്തിലെ ഭൂരിഭാഗം നക്ഷത്രങ്ങളും ചുവപ്പുകുള്ളന്മാർ ആയതിനാലാണിത്.[16][17] സൂര്യന്റെ കേവലകാന്തിമാനം ഏതാണ്ട് 4.8 ന്‌ അടുത്താണെന്ന് കണക്കാക്കപ്പെട്ടിരിക്കുന്നു.[18][19] സൂര്യന്റെ കൊറോണ അന്തരീക്ഷത്തിലേക്ക് തുടച്ചയായി വ്യാപിച്ച് ചാർജ്ജ് ചെയ്യപ്പെട്ട കണികകളുടെ അതിവേഗതയിലുള്ള ഉയർന്ന പ്രവാഹമായ സൗരക്കാറ്റ് സൃഷ്ടിക്കുന്നു, 100 ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് ദൂരം വരെ ഇത്തരത്തിലുള്ള സൗരക്കാറ്റുകൾ എത്തിച്ചേരുന്നു. നക്ഷത്രന്തരീയ മാധ്യമങ്ങളുമായി സൗരക്കാറ്റ് കൂട്ടിമുട്ടുന്നതുവഴി രൂപപ്പെടുന്ന ഹീലിയോസ്ഫിയർ സൗരയൂഥത്തിലെ ഏറ്റവും വലിയ ഘടനയാണ്‌.[20][21]

സമീപ ബബിൾ സോണിലെ നക്ഷത്രാന്തരീയ മേഘങ്ങളിലൂടെ സഞ്ചരിച്ചുകൊണ്ടിരിക്കുകയാണ്‌ സൂര്യൻ, ക്ഷീരപഥത്തിന്റെ ഓറിയോൺ ഭുജത്തിലാണ്‌ ഈ ബബിൾ സോണുള്ളത്. ഏറ്റവും അടുത്തുള്ള 5 നക്ഷത്രവ്യവസ്ഥകളിൽ പിണ്ഡം കൊണ്ട് സൂര്യൻ നാലാം സ്ഥാനത്താണ്‌.[22] ക്ഷീരപഥത്തിന്റെ കേന്ദ്രത്തിൽ നിന്നും 24,000 നും 26,000 നും ഇടയിൽ പ്രകാശവർഷങ്ങൾ ദൂരെയായി അതിനെ പരിക്രമണം ചെയ്തുകൊണ്ടിരിക്കുകയാണ്‌ സൂര്യൻ. ഇത്തരത്തിൽ താരാപഥ ഉത്തരധ്രുവത്തിൽ നിന്നും വീക്ഷിക്കപ്പെടുന്ന അവസ്ഥയിൽ ഘടികാര ദിശയിലുള്ള ഒരു പരിക്രമണം പൂർത്തിയാക്കാൻ 22.5 മുതൽ 25 വരെ കോടി വർഷങ്ങൾ എടുക്കും.

സൂര്യനിൽ നിന്നും ഭൂമിയിലേക്കുള്ള ശരാശരി ദൂരം 14.96 കോടി കിലോമീറ്റർ ആണ്‌ (അതായത് ഒരു ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് (AU)), ജനുവരിയിൽ ഉപസൗരത്തിലായിരിക്കുന്നതിനും ജൂലൈയിൽ അപസൗരത്തിലേക്ക് നീങ്ങിക്കൊണ്ടിരിക്കുന്നതിനിടയിൽ ഈ ദൂരത്തിന്‌ മാറ്റം വരും.[23] ഇതിനിടയിലെ ശരാശരി ദൂരത്തിൽ പ്രകാശം സൂര്യനിൽ നിന്നും ഭൂമിയിലേക്ക് എത്തിച്ചേരാൻ ഏകദേശം 8 മിനുട്ടും 19 സെക്കന്റും എടുക്കും. സൂര്യപ്രകാശത്തിലടങ്ങിയ ഊർജ്ജത്തെ ഉപയോഗപ്പെടുത്തിക്കൊണ്ടുള്ള പ്രകാശസംശ്ലേഷണം എന്ന പ്രക്രിയയാണ്‌ ഭൂമിയിലെ ഏതാണ്ടെല്ലാ ജീവനേയും നിലനിർത്തുന്നത്,[24] ഭൂമിയിലെ കാലാവസ്ഥയെ നിയന്ത്രിക്കുന്നതും സൂര്യനിൽ നിന്നുള്ള ഊർജ്ജമാണ്. സൂര്യന്റെ ഭൂമിയുടെ മേലുള്ള സ്വാധീനം നൂറ്റാണ്ടുകൾക്ക് മുൻപേ മനുഷ്യൻ തിരിച്ചറിഞ്ഞിരുന്നു, ഹിന്ദുമതം ഉൾപ്പെടെയുള്ള പൗരാണികമതങ്ങൾ സൂര്യനെ ദൈവമായി കണക്കാക്കുകയും ചെയ്യുന്നു. പതുക്കെയാണ്‌ സൂര്യനെ കുറിച്ചുള്ള കൃത്യമായ ശാസ്ത്രീയ അറിവുകൾ മനുഷ്യൻ ആർജ്ജിച്ചെടുത്തത്. പത്തൊൻപതാം നൂറ്റാണ്ടുവരെ ജ്യോതിശാസ്ത്രജ്ഞർക്ക് പോലും സൂര്യന്റെ ഭൗതികഘടനയെക്കുറിച്ചും ഊർജ്ജത്തിന്റെ ഉറവിടത്തെക്കുറിച്ചും അറിവുണ്ടായിരുന്നില്ല. സൂര്യനെക്കുറിച്ചുള്ള അറിവുകൾ ഇപ്പോഴും പൂർണ്ണമല്ല, സൂര്യൻ പ്രകടിപ്പിക്കുന്ന പല അസ്വാഭാവികപ്രതിഭാസങ്ങളും ഇപ്പോഴും വിശദീകരിക്കപ്പെടാതെ നിലനിൽക്കുന്നുണ്ട്.

സ്വഭാവഗുണങ്ങൾ

സ്റ്റീരിയോ ബി ബഹിരാകാശപേടകത്തിന്റെ ക്രമീകരണവേളയിൽ പകർത്തപ്പെട്ട സൂര്യപശ്ചാത്തലത്തിലെ ചന്ദ്രന്റെ സംതരണം.
സൂര്യന്റെ ഘടന വ്യക്തമാക്കുന്ന ഒരു ചിത്രം:
1. കാമ്പ്
2. വികിരണമേഖല
3. സം‌വഹനമേഖല
4. പ്രഭാമണ്ഡലം
5. വർണ്ണമണ്ഡലം
6. കൊറോണ
7. സൗരകളങ്കം
8. ഗ്രാന്യൂളുകൾ
9. പ്രോമിനൻസ്

മുഖ്യശ്രേണിയിൽപ്പെട്ട ഒരു G-type നക്ഷത്രമാണ് സൂര്യൻ. ഏതാണ്ട് പൂർണ്ണ ഗോളാകാരമാണ്‌ സൂര്യൻ‌, വ്യാസത്തിൽ ഏകദേശം 9 ദശലക്ഷത്തിലൊരുഭാഗത്തോളം ധ്രുവഭാഗം മധ്യരേഖഭാഗവുമായി വ്യത്യാസമുണ്ട്,[25] അതായത് ഈ വ്യത്യാസം വെറും 10 കി.മീ. മാത്രമേ വരുന്നുള്ളൂ. പ്ലാസ്മാവസ്ഥയിൽ ആയതിനാൽ തന്നെ സൂര്യന്റെ മധ്യരേഖാഭാഗം ധ്രുവഭാഗങ്ങളേക്കാളും വേഗത്തിൽ ഭ്രമണം ചെയ്യുന്നുണ്ട്, ഇത് ഡിഫറെൻഷ്യൽ റൊട്ടേഷൻ എന്നറിയപ്പെടുന്നു, കാമ്പിൽ നിന്നും പുറത്തേക്ക് വരുതോറും താപനിലയിൽ ഗണ്യമായ മാറ്റം വരുന്നതിനാൽ പദാർത്ഥങ്ങളുടെ സം‌വഹനം നടക്കുന്നതുവഴിയും പദാർത്ഥങ്ങൾ നീങ്ങുന്നതുവഴിയുമാണിങ്ങനെ സംഭവിക്കുന്നത്. ഈ പദാർത്ഥനീക്കങ്ങളിലാണ്‌ സൂര്യന്റെ ക്രാന്തിവൃത്തപരമായ ഉത്തരധ്രുവത്തിൽ നിന്നുമുള്ള വീക്ഷണത്തിൽ എതിർ ഘടികാരദിശയിലുള്ള കോണീയ സം‌വേഗം കുടികൊള്ളുന്നത്. ഈ ഭ്രമണങ്ങളുടെ കാലദൈർഘ്യം മധ്യരേഖായിടങ്ങളിൽ 25.6 ദിവസവും ധ്രുവങ്ങളിൽ 33.5 ദിവസവുമാണ്‌. പക്ഷേ ഭൂമി സഞ്ചരിച്ചുകൊണ്ടിരിക്കുന്ന അവസ്ഥയിൽ വീക്ഷിക്കുമ്പോൾ മധ്യാരേഖാ ഭാഗത്തെ ഭ്രമണദൈർഘ്യം 28 ദിവസമായി അനുഭവപ്പെടുന്നു.[26] പതുക്കെയുള്ള ഈ ഭ്രമണഫലമായി ഉളവാക്കപ്പെടുന്ന അപകേന്ദ്രബലം മധ്യരേഖാ ഭാഗത്തുള്ള ഗുരുത്വബലത്തിന്റെ 1.8 കോടിയിലൊരംശം മാത്രമേയുള്ളൂ. ഗ്രഹങ്ങൾ സൂര്യനുമേൽ ഉളവാക്കുന്ന വലിവു പ്രതിഭാസങ്ങളും വളരെ ദുർബലമാണ്‌, അവ കാരണമായും സൂര്യന്റെ രൂപത്തിന്‌ വലിയ മാറ്റം സംഭവിക്കുന്നില്ല.[27]

പോപ്പുലേഷൻ I (Population I) ഗണത്തിൽപ്പെട്ട ഘനമൂലകസമ്പന്നമായ നക്ഷത്രമാണ്‌ സൂര്യൻ.[28] സമീപത്തു സംഭവിച്ച ഒന്നോ അതിലധികമോ സൂപ്പർനോവകളുടെ ഫലമായുണ്ടായ ആഘാതതരംഗങ്ങളാകാം (shockwave) സൂര്യന്റെ ജനനത്തിന്‌ വഴിതെളിച്ചതെന്ന് അനുമാനിക്കപ്പെടുന്നു.[29] ഘനമൂലകങ്ങളുടെ ദാരിദ്ര്യമുള്ള പോപ്പുലേഷൻ II നക്ഷത്രങ്ങളെ അപേക്ഷിച്ച് സൗരയൂഥത്തിൽ കാണപ്പെടുന്ന സ്വർണ്ണം, യുറേനിയം മുതലായ ഘനമൂലകങ്ങളുടെ സാന്നിദ്ധ്യത്തിന്‌ കാരണമായി ഇതാണ്‌ വിശദീകരിക്കപ്പെട്ടിരിക്കുന്നത്. ഇത്തരം ഘനമൂലക സൃഷ്ടി സംഭവിക്കുന്ന ഊർജ്ജാഗിരണപ്രക്രിയകൾ സൂപ്പർനോവ പ്രതിഭാസത്തോടൊപ്പം സംഭവിക്കുന്നവയാണ്‌. ഘനമൂലകങ്ങൾ സൃഷ്ടിക്കപ്പെടാനുള്ള മറ്റൊരു വഴി രണ്ടാം തലമുറയിൽപ്പെട്ട ഭാര നക്ഷത്രങ്ങളുടെ ഉള്ളിൽ ന്യൂട്രോൺ ആഗിരണം ചെയ്യപ്പെടുന്നതുവഴിയുള്ള ട്രാൻസ്മ്യൂട്ടേഷനാണ്‌.[28]

ഗ്രഹങ്ങൾക്കുള്ളതുപോലെ സൂര്യന്റെ ശരീരത്തിന്‌ വ്യക്തമായ അതിർത്തിയില്ല, കേന്ദ്രത്തിൽ നിന്നും പുറത്തേക്ക് പോകുംതോറും സാന്ദ്രതയിൽ വലിയ കുറവു സംഭവിക്കുന്നു.[30] വ്യക്തമായ ആന്തരീക ഘടന സൂര്യനുണ്ടെങ്കിലും, സൂര്യന്റെ ആരം അളക്കുന്നത് അതിന്റെ പ്രഭാമണലത്തിന്റെ അതിർത്തി മുതലാണ്‌. താരതമ്യേന താപനില കുറഞ്ഞതും പ്രകാശത്തെ വലിയ തോതിൽ ആഗിരണം ചെയ്യാത്തതുമായ വാതക മണ്ഡലമാണ്‌ ഈ പാളിക്ക് മുകളിലുള്ളത്, അതിനാൽ തന്നെ നഗ്നനേത്രങ്ങൾക്കൊണ്ട് വീക്ഷിക്കുമ്പോൾ സൂര്യന്റെ ഉപരിതലം ഇതിലൂടെ കാണപ്പെടുന്നു.[31]

സൂര്യന്റെ ആന്തരീക ഭാഗം നേരിട്ട് നിരീക്ഷിക്കാൻ സാധ്യമല്ല, സൂര്യൻ വിദ്യുത്കാന്തികവികിരണങ്ങൾക്ക് അതാര്യവുമാണ്‌. ഭൂകമ്പങ്ങൾ സംഭവിക്കുമ്പോഴുണ്ടാകുന്ന തരംഗങ്ങൾ ഉപയോഗിച്ച് സീസ്മോളജിയിൽ ഭൂമിയുടെ ഘടന മനസ്സിലാക്കുന്നതുപോലെ സൂര്യന്റെ ആന്തരഭാഗത്തുകൂടി സഞ്ചരിക്കുന്ന മർദ്ദതരംഗങ്ങളെ പ്രയോജനപ്പെടുത്തി ഹീലിയോസീസ്മോളജിയിൽ സൂര്യന്റെ ആന്തരീക ഘടന അനാവൃതമാക്കുവാൻ ശ്രമിക്കുന്നു.[32] സൈദ്ധാന്തിക തലത്തിൽ ആന്തര പാളികളെ കുറിച്ച് കൂടുതൽ പഠിക്കുവാൻ കമ്പ്യൂട്ടർ സഹായത്തോടെ തയ്യാറാക്കുന്ന മാതൃകകൾ ഉപയോഗപ്പെടുത്തുകയാണ്‌ ചെയ്യുന്നത്.

കാമ്പ്

കേന്ദ്രത്തിൽ നിന്നും സൗരവ്യാസാർദ്ധത്തിന്റെ 20-25% വരെയുള്ള ഭാഗമാണ്‌ സൂര്യന്റെ കാമ്പായി കണക്കാക്കപ്പെടുന്നത്.[33] 150 ഗ്രാം/സെ.മീ.3 വരെയാണ്‌ അവിടത്തെ സാന്ദ്രത[34][35] (ഭൂമിയിലെ ജലത്തിന്റെ സാന്ദ്രതയേക്കാൾ 150 മടങ്ങ്), താപനില 1,36,00,000 കെൽവിനും (ഇതേ സമയം ഉപരിതലത്തിലെ താപനില 5,800 കെൽവിനാണ്‌). അടുത്ത കാലത്ത് സോഹോ (SOHO) ദൗത്യം വഴി ലഭിച്ച വിവരങ്ങളുടെ വിശകലനം സൂര്യന്റെ കാമ്പിലെ ഭ്രമണനിരക്ക് മറ്റ് വികിരണമേഖലയേക്കാൾ കൂടുതലാണെന്ന വസ്തുതയെ പിന്തുണക്കുന്നതായിരുന്നു.[33] ആഴ്ചയിൽ ഒരു പ്രാവശ്യം എന്ന നിരക്കിൽ സൂര്യന്റെ കാമ്പ് കറങ്ങുന്നുണ്ട്. ഇത് സൂര്യന്റെ പുറംഭാഗത്തെക്കാൾ നാല് മടങ്ങ് കൂടുതലാണ്.[36] സൂര്യന്റെ ഊർജ്ജോല്പാദനം ഭൂരിഭാഗവും നടക്കുന്നത് p-p (പ്രോട്ടോൺ-പ്രോട്ടോൺ) ശൃംഖല പ്രതിപ്രവർത്തനം വഴിയാണ്‌; ഈ പ്രക്രിയയിൽ ഹൈഡ്രജൻ മൂലകം ഹീലിയമായി മാറ്റപ്പെടുന്നു.[37] സൂര്യനിലെ ഹീലിയത്തിൽ രണ്ട് ശതമാനത്തിലെ താഴെ ഭാഗം മാത്രമേ CNO ചക്രം വഴി വന്നതായുള്ളൂ. കാമ്പിൽ മാത്രമാണ്‌ ആണവസം‌യോജനം വഴി വലിയതോതിലുള്ള താപം ഉല്പാദിപ്പിക്കപ്പെടുന്നത്, സൂര്യന്റെ ബാക്കിഭാഗങ്ങളെല്ലാം കാമ്പിൽ നിന്നും പുറത്തേക്ക് പ്രവഹിക്കുന്ന താപത്താൽ ചൂടാക്കപ്പെടുന്നതാണ്‌. അണുസം‌യോജനം വഴി കാമ്പിൽ ഉല്പാദിപ്പിക്കപ്പെടുന്ന ഊർജ്ജം ഫോട്ടോസ്ഫിയറിൽ നിന്നും വരുന്ന പ്രകാശമായും കണികകളുടെ ഉയർന്ന ഗതികോർജ്ജമായും ബഹിരാകാശത്തിലേക്ക് രക്ഷപ്പെടുന്നതിനു മുൻപായി വിവിധ പാളികളിലൂടെ സഞ്ചരിക്കേണ്ടതായുണ്ട്.[38][39]

സൂര്യന്റെ കാമ്പിൽ ഒരോ സെക്കന്റിലും 9.2×1037 എണ്ണം പ്രോട്ടോൺ-പ്രോട്ടോൺ ശൃംഖല പ്രതിപ്രവർത്തനം നടക്കുന്നുണ്ട്. ഈ പ്രക്രിയയ്ക്ക് നാല് പ്രോട്ടോണുകൾ ആവശ്യമുള്ളതിനാൽ, ഒരോ സെക്കന്റിലും 3.7×1038 എണ്ണം (6.2×1011 കിലോഗ്രാം) പ്രോട്ടോണുകൾ (അഥവാ ഹൈഡ്രജൻ അണുകേന്ദ്രങ്ങൾ) ഹീലിയം അണുകേന്ദ്രങ്ങളായി പരിവർത്തനം ചെയ്യപ്പെടുന്നു (ഏതാണ്ട് 8.9×1056 സ്വതന്ത്ര പ്രോട്ടോണുകൾ സൂര്യനിൽ ഉണ്ടെന്ന് കണക്കാക്കപ്പെടുന്നു).[39] ഹൈഡ്രജൻ ആറ്റങ്ങൾ സം‌യോജിച്ച ഹീലിയം ആയി മാറുന്ന ഈ പ്രക്രിയയിൽ പിണ്ഡത്തിന്റെ 0.7 ശതമാനത്തോളം ഊർജ്ജമായി മാറ്റപ്പെടുന്നതിനാൽ [40] ദ്രവ്യമാന-ഊർജ സമത്വമനുസരിച്ച് സൂര്യൻ ഒരു സെക്കന്റിൽ 4.26 മെട്രിക്ക് ടൺ ദ്രവ്യം ഊർജ്ജമായി മാറ്റുന്നുണ്ട്, അതായത് 383 യോട്ടാവാട്ട് (3.83×1026 വാട്ട്) ഊർജ്ജം.[39] 194 µW/kg ആണ്‌ ഊർജ്ജ സാന്ദ്രത,[41] താരതമ്യേന ചെറിയ കാമ്പിലാണ്‌ അണുസം‌യോജനത്തിന്റെ ഭൂരിഭാഗവും നടക്കുന്നെന്നതിനാൽ തന്നെ അവിടെയുള്ള ഊർജ്ജ സാന്ദ്രത ഇതിന്റെ 150 മടങ്ങായിരിക്കും.[42] താരതമ്യത്തിന്‌, മനുഷ്യശരീരം 1.3 W/kg എന്ന നിരക്കിലാണ്‌ താപം ഉല്പാദിപ്പിക്കുന്നത്, സൂര്യന്റെ 600 ഇരട്ടിയാണിത്.[43] കാമ്പിന്റെ സാന്ദ്രത ശരാശരിയേക്കാൾ 150 മടങ്ങ് കൂടുതലായതിനാൽ, 0.272 W/m3 എന്ന കുറഞ്ഞ നിരക്കിലാണ്‌ സൂര്യന്റെ കാമ്പിൽ നടക്കുന്ന ഊർജ്ജോല്പാദനമെന്ന് ഇത് വ്യക്തമാക്കുന്നു. ഈ നിരക്ക് ഒരു മെഴുകുതിരിയിൽ നടക്കുന്നതിനേക്കാൾ കുറവാണ്‌.[note 1]

സാന്ദ്രത, താപനില എന്നിവയുമായി ഗാഢമായി ബന്ധപ്പെട്ടുകിടക്കുന്നതാണ്‌ അണുസം‌യോജന പ്രക്രിയ, ഇതു കാരണം കാമ്പിൽ നടക്കുന്ന അണുസം‌യോജനപ്രക്രിയ സ്വയം സന്തുലിതത്വം പ്രാപിക്കുന്നു: അണുസം‌യോജന നിരക്ക് അല്പം കൂടുകയാണെങ്കിൽ കാമ്പ് കൂടുതൽ ചൂടാകുന്നതിനും പുറം പാളികൾ ചെലുത്തുന്ന ഭാരത്തിനെതിരായി അല്പം വികസിക്കുന്നതിന് കാരണമാകും ഇത് സം‌യോജന നിരക്കിൽ കുറവുവരുത്തുകയും അസന്തുലിതത്വം പരിഹരിക്കുകയും ചെയ്യുന്നു; സം‌യോജന നിരക്കിൽ അല്പം കുറവുവരുകയാണെങ്കിൽ താപനില കുറഞ്ഞ് കാമ്പ് സങ്കോചിക്കുന്നതിന് കാരണമാകുന്നു ഇത് സം‌യോജന നിരക്ക് വർദ്ധിപ്പിക്കുകയും കാമ്പ് വികസിച്ച് പഴയ അവസ്ഥയിലേക്ക് മടങ്ങുകയും ചെയ്യും.[45][46]

അണുസം‌യോജന പ്രക്രിയഫലമായി പുറത്തുവരുന്ന ഉന്നതോർജ്ജ ഫോട്ടോണുകൾ (ഗാമാ കിരണങ്ങൾ) ഏതാനും മില്ലിമീറ്റർ മാത്രമുള്ള പ്ലാസ്മയാൽ ആഗിരണം ചെയ്യപ്പെടുകയും വീണ്ടും ഏതെങ്കിലും വശത്തേക്ക് (കുറച്ച് ഊർജ്ജം കുറഞ്ഞ നിലയിൽ) ഉൽസർജ്ജിക്കപ്പെടുകയും ചെയ്യുന്നു. ഈ പ്രക്രിയ തുടരുന്നതുവഴി വികിരണം സൗരോപരിതലത്തിലെത്താൻ വലിയ കാലദൈർഘ്യം വേണ്ടിവരുന്നു. ഇങ്ങനെയുള്ള ഫോട്ടോണിന്റെ സഞ്ചാര കാലദൈർഘ്യം 10,000 വർഷങ്ങൾ മുതൽ 1,70,000 വർഷങ്ങൾ വരെയാകാമെന്ന് കണക്കാക്കപ്പെട്ടിരിക്കുന്നു.[47]

ഈ രീതിയിൽ സൂര്യന്റെ സം‌വഹന മേഖലയും കടന്ന് സഞ്ചരിച്ച് അതാര്യമായ പാളിയായ ഫോട്ടോസ്ഫിയറിൽ എത്തുന്ന ഫോട്ടോൺ ദൃശ്യപ്രകാശത്തിന്റെ രൂപത്തിൽ ബഹിരാകാശത്തേക്ക് രക്ഷപ്പെടുന്നു. കാമ്പിൽ സൃഷ്ടിക്കപ്പെടുന്ന ഒരോ ഗാമാ കിരണവും ബഹിരാകാശത്തിലേക്ക് രക്ഷപ്പെടുന്നതിനു മുൻപ് ഏതാനും ദശലക്ഷം പ്രകാശത്തിന്റെ ഫോട്ടോണുകളായി പരിവർത്തനം ചെയ്യപ്പെടുന്നു. അണുസം‌യോജനഫലമായി ന്യൂട്രിനോകളും ഉല്പാദിക്കപ്പെടുന്നുണ്ട്, പക്ഷേ ഫോട്ടോണുകളിൽ നിന്നും വിഭിന്നമായി അവ അപൂർവ്വമായേ ദ്രവ്യവുമായി പ്രതിപ്രവർത്തിക്കുകയുള്ളൂ, അതിനാൽ തന്നെ അവയിലെ മുഴുവനെണ്ണവും സൂര്യനിൽ നിന്നും പെട്ടെന്നുതന്നെ രക്ഷപ്പെട്ടു പുറത്തുവരുന്നു.ഏതാനും വർഷങ്ങളോളും സൂര്യൻ ഉല്പാദിപ്പിക്കുന്നതായി നിരീക്ഷിച്ച ന്യൂട്രിനോകളുടെ എണ്ണം സൈദ്ധാന്തികമായി കണക്കാക്കിയ എണ്ണത്തിന്റെ മൂന്നിലൊന്നും മാത്രമായി കാണപ്പെട്ടിരുന്നു. ഈ ചേർച്ചക്കുറവ് അടുത്ത കാലത്ത് കണ്ടെത്തിയ ന്യൂട്രിനോ ആന്ദോളനം കാരണമാണെന്ന് കണ്ടെത്തുകയുണ്ടായി: സൂര്യൻ ഉല്പാദിപ്പിക്കുന്നത് സൈദ്ധാന്തികമായി കണക്കാക്കിയത്ര ന്യൂട്രിനോകൾ തന്നെയാണ്‌, പക്ഷേ ന്യൂട്രിനോകൾ അവയുടെ ഫ്ലേവർ മാറുന്നതിനാലായിരുന്നു മൂന്നിൽ രണ്ടു ന്യൂട്രിനോകളേയും ന്യൂട്രിനോ ഡിറ്റക്റ്ററുകൾക്ക് തിരിച്ചറിയാൻ കഴിയാതിരുന്നത്.[48]

വികിരണ മേഖല

സൗര ആരത്തിന്റെ 0.25 ഭാഗം മുതൽ 0.7 ഭാഗം വരെയുള്ള മേഖലയാണ്‌ വികിരണമേഖല. ഈ മേഖലയിലുള്ള സൗരപദാർത്ഥങ്ങൾ ഉയർന്ന താപനിലയിലുള്ളതും സാന്ദ്രവുമാണ്‌. അതിനാൽ കാമ്പിൽ ഉല്പാദിപ്പിക്കപ്പെടുന്ന ഉയർന്ന താപം പുറത്തേക്ക് പ്രവഹിക്കുന്നതിന്‌ താപ വികിരണം കൊണ്ടുമാത്രം സാധ്യമാണ്‌.[42] ഈ മേഖലയിൽ താപ സം‌വഹനം സംഭവിക്കുന്നില്ല; പുറത്തോട്ട് വരുംതോറും പദാർത്ഥങ്ങളുടെ താപനില കുറഞ്ഞുവരുന്നുവെങ്കിലും (70,00,000 °C ൽ നിന്നും 20,00,000 °C) ഈ താപനില വ്യത്യാസം അഡയബാറ്റിക്ക് ലാപ്സ് നിരക്കിനേക്കാൾ കുറവായതിനാൽ താപസം‌വഹനം നടക്കുന്നില്ല.[35] ഹൈഡ്രജൻ, ഹീലിയം അയോണുകൾ ഉൽസർജ്ജിക്കുന്ന ഫോട്ടോണുകളുടെ രൂപത്തിൽ താപം വികിരണം വഴി സഞ്ചരിക്കുന്നു, ഇങ്ങനെ അയോണുകൾ ഉൽസർജ്ജിക്കുന്ന ഫോട്ടോണുകൾ മറ്റ് അയോണുകളാൽ ആഗിരണം ചെയ്യപ്പെടുന്നതിന്‌ മുൻപായി വളരെ ചെറിയ ദൂരം മാത്രമേ സഞ്ചരിക്കുകയുള്ളൂ.[42] ഫോട്ടോൺ സാന്ദ്രത വികിരണമേഖലയുടെ ആരംഭത്തിൽ നിന്നും അവസാനത്തിലേക്ക് നീങ്ങുമ്പോൾ നൂറിലൊന്നായി ചുരുങ്ങുന്നു (20 g/cm³ ൽ നിന്നും 0.2 g/cm³ ലേക്ക്).[42]

വികിരണ മേഖലയ്ക്കും സം‌വഹന മേഖലയ്ക്കും ഇടയിലുള്ള പാളി ടാക്കോലൈൻ (tachocline) എന്നറിയപ്പെടുന്നു. ഏകതാനമായി ഭ്രമണം ചെയ്യുന്ന വികിരണ മേഖലയുടെ പാളിയും വിഭിന്ന രീതിയിൽ ഭ്രമണം ചെയ്യുന്ന സം‌വഹന മേഖലയുടെ പാളിയും ഒത്തുചേരുന്ന ഭാഗമാണിത്, ഇവിടെ ഒരു പാളി മറ്റൊരു പാളിയുടെ മീതെ തെന്നി നീങ്ങുന്നു.[49] സം‌വഹന മേഖലയിൽ കാണപ്പെടുന്ന വാതകചലനങ്ങൾ ഈ പാളിയുടെ മുകളിൽ നിന്നും അടിത്തട്ടിലെത്തുന്നതോടെ അപ്രത്യക്ഷമാകുകയും വികിരണ മേഖലയുടെ ശാന്തത കൈവരിക്കുകയും ചെയ്യുന്നു. സൂര്യന്റെ കാന്തിക ക്ഷേത്രത്തിനു കാരണമായ കാന്തിക ഡൈനാമോ ഈ പാളിയിലാണെന്നാണ്‌ കരുതപ്പെടുന്നത്.[35]

സം‌വഹന മേഖല

സൂര്യന്റെ പുറം പാളിയിൽ ഉപരിതലത്തിൽ നിന്നും ഏകദേശം 2,00,000 കി.മീറ്റർ വരെയുള്ള (അതായത് സൗര ആരത്തിന്റെ 70%) പ്ലാസ്മ താപത്തെ അകത്തുനിന്നും പുറത്തേക്ക് വികിരണം വഴി കൈമാറ്റം നടത്തുന്നതിനാവശ്യമായത്ര താപനിലയുള്ളതോ സാന്ദ്രമോ അല്ല (മറ്റൊരു വിധത്തിൽ പറഞ്ഞാൽ അത് അതാര്യവുമാണ്‌). ഇതിന്റെ ഫലമായി താപ സ്തംഭങ്ങൾ തപ്തമാക്കപ്പെട്ട പദാർത്ഥങ്ങളെ ഉപരിതലത്തിലേക്ക് (പ്രഭാമണ്ഡലത്തിലേക്ക്) വഹിച്ചു കൊണ്ടുവരുന്നു. ഉപരിതലത്തിലെത്തുന്ന അത്തരം പദാർത്ഥങ്ങൾ താപനില കുറയുന്നതോടെ വികിരണമേഖലയിൽ നിന്നും കൂടുതൽ താപം സ്വീകരിക്കുന്നതിനായി സം‌വഹന മേഖലയുടെ അടിത്തട്ടിലേക്ക് ആഴ്ന്നു പോകുന്നു. സൂര്യന്റെ ദൃശ്യമാകുന്ന ഉപരിതലത്തിൽ താപനില 5,700° K ലേക്ക് താഴ്ന്നിരിക്കും. സാന്ദ്രതയും ഏതാണ്ട് 0.2 g/m3 (അതായത് ഭൂമിയിലെ സമുദ്രനിരപ്പിലെ അന്തരീക്ഷസാന്ദ്രതയുടെ പതിനായിരത്തിലൊരു ഭാഗം) മാത്രമേ ഉണ്ടാകൂ.[35]

മുകളിൽ സൂചിപ്പിച്ച താപസ്തംഭങ്ങളാണ്‌ സൗരോപരിതലത്തിൽ കാണുന്ന സോളാർ ഗ്രാനുലേഷനും സൂപ്പർഗ്രാനുലേഷനും സൃഷ്ടിക്കുന്നത്. സൂര്യാന്തർഭാഗത്തെ ഏറ്റവും പുറമേയുള്ള ഈ മേഖലയിൽ നടക്കുന്ന പ്രക്ഷുബ്ധമായ സം‌വഹനങ്ങൾ സൗരോപരിതലം മുഴുവനും ചെറുവലിപ്പത്തിലുള്ള കാന്തിക ഉത്തര ദക്ഷിണ ധ്രുവജോഡികൾ സൃഷ്ടിക്കുന്നതിന്‌ കാരണമാകുന്നു.[35] സൗരസ്തംഭങ്ങൾ ബെർണാഡ് സെല്ലുകളാണ് - അതിനാൽ അവ ഷഡ്‌ഭുജ സ്തംഭങ്ങളെപ്പോലെയാണ്.[50]

പ്രഭാമണ്ഡലം

ദൃശ്യപ്രകാശത്തിന് സുതാര്യമാകുന്നതുവഴി കാണപ്പെടുന്ന സൗരോപരിതലത്തിനു താഴെയുള്ള പാളിയാണ് പ്രഭാമണ്ഡലം (photosphere).[51] പ്രഭാമണ്ഡലത്തിനു പുറത്ത് സൂര്യപ്രകാശത്തിനു ബഹിരാകാശത്തേക്ക് സഞ്ചരിക്കാനുള്ള സ്വാതന്ത്ര്യം ലഭിക്കുന്നു, അങ്ങനെ ഈ രൂപത്തിൽ ഊർജ്ജം സൂര്യനെ വിട്ടു പുറത്തേക്ക് വ്യാപിക്കുന്നു. പ്രകാശകണങ്ങളെ എളുപ്പത്തിൽ ആഗിരണം ചെയ്യുന്ന H അയോണുകളിലുണ്ടാകുന്ന കുറവാണ് ഈ തരത്തിൽ അതാര്യവസ്ഥയ്ക്ക് മാറ്റം സംഭവിക്കുന്നതിനുള്ള കാരണം.[51] ഇലക്ട്രോണുകൾ ഹൈഡ്രജൻ ആറ്റങ്ങളുമായി പ്രതിപ്രവർത്തിച്ച് H അയോണുകൾ ഉണ്ടാകുന്നതുവഴിയാണ് നമ്മൾ കാണുന്ന ദൃശ്യപ്രകാശം രൂപമെടുക്കുന്നത്.[52][53] ഏതാനും പത്തോ നൂറോ കിലോമീറ്റർ കട്ടിയുള്ളതും ഭൂമിയിലെ വായുവിനേക്കാൾ അല്പം സുതാര്യതയേറിയതുമാണ് പ്രഭാമണ്ഡലം. പ്രഭാമണ്ഡലത്തിന്റെ മുകൾഭാഗം അടിവശത്തിനേക്കാൾ താപനിലയിൽ കുറഞ്ഞതായതിനാൽ സൂര്യന്റെ ചിത്രത്തിൽ മധ്യഭാഗം വശങ്ങളേക്കാൾ തെളിഞ്ഞു കാണപ്പെടുന്നു, ഈ പ്രതിഭാസം ലിംബ് ഡാർക്കെനിങ്ങ് (limb darkening) എന്നറിയപ്പെടുന്നു.[51] സൂര്യന്‌ ഏകദേശം ഒരു ബ്ലാക്ക്-ബോഡി വർണ്ണരാജിയാണുള്ളത് (black-body spectrum) ഇത് സൂചിപ്പിക്കുന്നത് താപനില 6,000 കെൽവിനെന്നാണ്‌, ഇടയ്ക്ക് പ്രഭാമണ്ഡലത്തിനു മുകളിലുള്ള നേരിയ പാളികളിൽ ആറ്റോമിക ആഗിരണ രേഖകളും കാണപ്പെടുന്നു. പ്രഭാമണ്ഡലത്തിലെ പദാർത്ഥസാന്ദ്രത ഏതാണ്ട് 1023 m−3 ആണ്‌ (ഇത് ഭൂമിയിലെ സമുദ്രനിരപ്പിലെ അന്തരീക്ഷത്തിന്റെ സാന്ദ്രതയുടെ ഒരു ശതമാനം മാത്രമാണ്‌).[42]

പ്രഭാമണ്ഡലത്തിന്റെ ഒപ്റ്റിക്കൽ സ്പെക്ട്രത്തെ കുറിച്ചുള്ള ആദ്യകാല പഠനങ്ങൾ നടത്തിയ സമയത്ത് അതുവരെ ഭൂമിയിലുള്ളതായി അറിയപ്പെടാത്ത രാസമൂലകത്തിന്റേതായ അവശോഷണരേഖകൾ (absorption lines) കണ്ടെത്തുകയുണ്ടായി. 1868 ൽ നോർമൻ ലോക്കയർ (Norman Lockyer) എന്ന ശാസ്ത്രജ്ഞൻ അത് ഒരു അതുവരെ മനസ്സിലാകാത്ത ഒരു പുതിയ മൂലകത്തിന്റേതാണെന്ന നിഗമനത്തിലെത്തുകയും ഗ്രീക്ക് സൂര്യദേവനായ ഹീലിയോസിന്റെ നാമത്തോട് ചേരുന്ന ഹീലിയം എന്ന പേര് നൽകുകയും ചെയ്തു. അതിനു 25 വർഷങ്ങൾക്ക് ശേഷം മാത്രമാണ്‌ ഭൂമിയിൽ ഹീലിയം വേർതിരിച്ച് മനസ്സിലാക്കപ്പെട്ടത്.[54]

അന്തരീക്ഷം

പൂർണ്ണ സൂര്യഗ്രഹണ സമയത്ത് സൂര്യന്റെ കൊറോണയെ നഗ്നനേത്രങ്ങൾ കൊണ്ട് വീക്ഷിക്കുവാൻ കഴിയും.

പ്രഭാമണ്ഡലത്തിന്‌ മുകളിലുള്ള ഭാഗങ്ങളെയെല്ലാം ചേർത്ത് സൗരാന്തരീക്ഷം എന്ന പദം കൊണ്ട് സൂചിപ്പിക്കുന്നു.[51] ആ ഭാഗങ്ങൾ വിദ്യുത്കാന്തികവർണ്ണരാജിയിലെ റേഡിയോ മുതൽ ദൃശ്യ, ഗാമാ വരെയുള്ള കിരണങ്ങൾ ഉപയോഗപ്പെടുത്തുന്ന ദൂരദർശിനികൾ വഴി നിരീക്ഷിക്കുവാൻ കഴിയും. സൗരാന്തരീക്ഷത്തെ ആകെ അഞ്ച് മേഖലകളായി തിരിച്ചിരിക്കുന്നു: ടെമ്പറേച്ചർ മിനിമം, വർണ്ണമണ്ഡലം (chromosphere), സംക്രമണമേഖല (transition region), കൊറോണ (corona), ഹീലിയോസ്ഫിയർ (heliosphere) എന്നിവയാണവ.[51] ഇതിൽ ഹീലിയോസ്ഫിയർ എന്ന മേഖല ഏറ്റവും കനം കുറഞ്ഞതും വളരെ ദൂരം വരെ അതായത് പ്ലൂട്ടോയുടെ പരിക്രമണാതിരിത്തിയും കടന്ന് നക്ഷത്രാന്തര മാധ്യമങ്ങളുമായുള്ള ശക്തമായ അതിർത്തിയായ ഹീലിയോപോസ് (heliopause) വരെ എത്തിനിൽക്കുന്നു. വർണ്ണമണ്ഡലം, സംക്രമണമേഖല, കോറോണ തുടങ്ങിയവ സൗരോപരിതലത്തേക്കാൾ താപനിലകൂടിയവയാണ്‌.[51] ഇതിനുള്ള കാരണം ഇതുവരെ വ്യക്തമായി വിശദീകരിക്കുവാൻ സാധിച്ചിട്ടില്ല; ലഭിച്ച വിവരങ്ങളനുസരിച്ചുള്ള വിവരങ്ങൾ സൂചിപ്പിക്കുന്നത് കോറോണയെ ചൂടുപിടിപ്പിക്കുവാനുള്ള ഊർജ്ജം ആൽഫ്‌വെൻ തരംഗങ്ങൾക്ക് (Alfvén waves) ഉണ്ടായിരിക്കാമെന്നാണ്‌.[55]

ടെമ്പറേച്ചർ മിനിമം എന്നു വിളിക്കപ്പെടുന്ന പാളിയാണ്‌ സൂര്യനിലെ ഏറ്റവും താപനില കുറഞ്ഞ പാളി, പ്രഭാമണ്ഡലത്തിന്‌ ഏകദേശം 500 കി.മീ മുകളിലുള്ള മേഖലയാണിത്, ഏതാണ്ട് 4,100 കെൽവിനാണ്‌ ഈ മേഖലയിലെ താപനില.[51] കാർബൺ മോണോക്സൈഡ്, ജലം തുടങ്ങിയ ലളിത തന്മാത്രകൾ ഉണ്ടായിരിക്കാവുന്നത്ര താപനില കുറവാണ്‌ ഈ മേഖലയ്ക്ക്, ഇത്തരം തന്മാത്രകളെ അവയുടെ അവശോഷണ വർണ്ണരാജി വഴി തിരിച്ചറിയാവുന്നതാണ്‌.[56]

ടെമ്പറേച്ചർ മിനിമം പാളിക്കു മുകളിൽ ഏതാണ്ട് 2,000 കി.മീ കനമുള്ള പാളിയാണ്‌ വർണ്ണമണ്ഡലം (chromosphere), ഉൽസർജ്ജന, അവശോഷണ രേഖകൾ കൂടുതലുള്ള ഭാഗമാണിത്.[51] വർണ്ണം എന്നർത്ഥം വരുന്ന ക്രോമ (chroma) എന്ന ഗ്രീക്ക് പദത്തിൽ നിന്നാണ്‌ ഈ പാളിയുടെ ഇംഗ്ലീഷ് നാമമായ chromosphere രൂപപ്പെട്ടിരിക്കുന്നത്. പൂർണ്ണ സൂര്യഗ്രഹണ സമയത്ത് വർണ്ണപ്രഭയോടെ കാണപ്പെടുന്നതിനാലാണ് ഈ പേര്.[42] വർണ്ണമണ്ഡലത്തിലെ താപനില മുകളിലേക്ക് വരുന്തോറും വർദ്ധിച്ചുവരുന്നു, ഏറ്റവും മുകളിൽ 20,000 കെൽവിൻ വരെ താപനില എത്തുന്നു.[51] വർണ്ണമണ്ഡലത്തിന്റെ മുകൾ ഭാഗത്ത് ഹീലിയം ഭാഗികമായി അയോണികരിക്കപ്പെടുന്നു.[57]

ഈ ചിത്രത്തിൽ സൂര്യന്റെ വ്യത്യസ്ത കാന്തിക ധ്രുവങ്ങളുള്ള പ്ലാസ്മയിലെ മേഖലകൾ തമ്മിൽ ബന്ധപ്പെടുന്നത് കാണിക്കുന്നു. ഹിനോഡെ പേടകത്തിലെ ദൃശ്യപ്രകാശത്തിലെ സൗരദൂരദർശിനി 2007 ജനുവരി 12 ന് പകർത്തിയത്.

വർണ്ണമണ്ഡലത്തിന്‌ മുകളിലുള്ള കനം കുറഞ്ഞ (ഏകദേശം 200 കി.മീ കനമുള്ള) പാളിയാണ്‌ സംക്രമണ മേഖല (transition region). താപനില വർണ്ണമണ്ഡലത്തിന്റെ മുകൾഭാഗത്തുള്ള 20,000 കെൽവിൻ എന്നതിൽ നിന്നും പെട്ടെന്നു വർദ്ധിച്ചു മുകളിലെത്തുമ്പോൾ ഒരു ദശലക്ഷം കെൽവിൻ വരെയായിത്തീരുന്നു.[58] ഈ താപനില വർദ്ധന ഹീലിയത്തിന്റെ പൂർണ്ണ അയോണീകരണത്തിനു കാരണമാകുകയും പ്ലാസ്മയുടെ വികിരണം വഴിയുള്ള തണുക്കലിനെ കുറയ്ക്കുകയും ചെയ്യുന്നു.[57] ഒരു കൃത്യമായ ഉയരത്തിലല്ല സംക്രമണ മണ്ഡലം നിലനിൽക്കുന്നത്, മറിച്ച് വർണ്ണമണ്ഡലത്തിലെ സവിശേഷതകളായ പ്രകാശവലയങ്ങൾ, ഇഴരൂപങ്ങൾ തുടങ്ങിയവയുടെ ചുറ്റിലായി രൂപപ്പെടുകയാണ്‌.[42] ഭൗമോപരിതലത്തിൽ നിന്നും എളുപ്പത്തിൽ നിരീക്ഷണ വിധേയമാക്കാവുന്നതല്ല സംക്രമണ മണ്ഡലം, ബഹിരാകാശത്തു നിന്നും അൾട്രാവയലറ്റ് തരംഗങ്ങളിലെ ഉയർന്ന ഭാഗത്തെ ഉപയോഗപ്പെടുത്താവുന്ന ഉപകരണങ്ങൾ ഉപയോഗിച്ച് ഈ മേഖലയെ വീക്ഷണവിധേമാക്കുവാൻ കഴിയും.[59]

സൂര്യന്റെ ഏറ്റവും ഉപരിതലത്തിലുള്ള സൗരാന്തരീക്ഷമാണ്‌ കൊറോണ, വ്യാപ്തത്തിൽ സൂര്യനേക്കാളും വരും ഈ മേഖല. ബഹിരാകാശത്തേക്ക് വ്യാപിച്ചു കിടക്കുന്നതാണ്‌ കോറോണ, ഈ മേഖല അവസാനം സൗരയൂഥം മുഴുവൻ വ്യാപിക്കുന്ന സൗരക്കാറ്റുകളായി രൂപപ്പെടുകയും ചെയ്യുന്നു.[60] കൊറോണയുടെ ഏറ്റവും താഴെഭാഗത്ത് പദാർത്ഥ സാന്ദ്രത ഏതാണ്ട് 1015–1016 m−3 ആണ്‌.[57] കൊറോണയുടേയും സൗരക്കാറ്റുകളുടേയും ശരാശരി താപനില 10-20 ശലക്ഷം കെൽ‌വിനാണ്‌, പക്ഷേ ഏറ്റവും താപനില കൂടിയ ഭാഗത്ത് 80 ലക്ഷം മുതൽ 2 കോടി കെൽവിൻ വരെയാകാം.[58] കൊറോണയിലെ ഈ താപനിലയെ വിശദീകരിക്കുന്ന സിദ്ധാന്തങ്ങളൊന്നും രൂപപ്പെടുത്തുവാൻ ഇതു വരെ കഴിഞ്ഞിട്ടില്ല, കാന്തിക പുനർബന്ധനവുമായി ബന്ധപ്പെട്ടു വരുന്നതാണ്‌ ഈ താപത്തിൽ കുറച്ചുഭാഗമെന്ന് അറിയാമെന്ന് മാത്രം.[58][60]

സൂര്യനു ചുറ്റും സൗരകാറ്റിന്റെ പ്ലാസ്മയാൽ നിറഞ്ഞു നിൽക്കുന്ന ആവരണമാണ്‌ ഹീലിയോസ്ഫിയർ, 20 സൗര ആരം (0.1 AU) മുതൽ സൗരയൂഥത്തിന്റെ അതിർത്തിവരെ ഇത് വ്യാപിച്ച് കിടക്കുന്നു. ആൽഫ്‌വെൻ തരംഗങ്ങളുടെ വേഗതയേക്കാൾ സൗരക്കാറ്റുകൾ വേഗത കൈവരിക്കുന്ന മേഖലയായാണ്‌ ഇതിന്റെ ആന്തര അതിർത്തി നിജപ്പെടുത്തിയിരിക്കുന്നത്, .[61] ആൽഫ്‌വെൻ തരംഗങ്ങളുടെ വേഗതയിൽ മാത്രമേ വിവരത്തിന്‌ സഞ്ചരിക്കാൻ കഴിയൂ എന്നതിനാൽ പുറത്തുള്ള പ്രക്ഷുബ്ധതയും (turbulence) ചലനാത്മകബലങ്ങളും കോറോണയ്ക്കകത്തുള്ള ആകാരത്തെ സ്വാധീനിക്കുന്നില്ല. 50 ആസ്ട്രോണമിക്കൽ യൂണിറ്റ് അകലെയുള്ള ഹീലിയോപോസ് എത്തുന്നതുവരെ സർപ്പിളാകൃതിയിൽ കാന്തികക്ഷേത്രം രൂപപ്പെടുത്തിക്കൊണ്ട് ഹീലിയോസ്ഫിയറിനകത്തു നിന്നും തുടർച്ചയായി സൗരക്കാറ്റുകൾ പുറത്തേക്ക് ഒഴുകിക്കൊണ്ടിരിക്കുകയാണ്‌.[60] ഹീലിയോസ്ഫിയറിന്റെ അതിർത്തിയിലെത്താറായ രണ്ട് വോയേജർ പേടകങ്ങളും ഉയർന്ന ചാർജ്ജുള്ള കണികകളുടെ സാന്നിദ്ധ്യം രേഖപ്പെടുത്തിയിട്ടുണ്ട്.[62]

കാന്തികക്ഷേത്രം

സൂര്യന്റെ പ്ലാസ്മയിൽ രൂപപ്പെടുന്ന കാന്തികക്ഷേത്രം ഭ്രമണം ചെയ്ത് ഗ്രഹാന്തരമാധ്യമത്തിൽ വ്യാപിക്കുന്നതുവഴി സൃഷ്ടിക്കപ്പെടുന്ന ഹീലിയോസ്ഫെറിക്ക് കറന്റ് ഷീറ്റ് സൗരയൂഥത്തിന്റെ അതിർത്തിവരെ എത്തുന്നു.


കാന്തികമായി സജീവമായ ഒരു നക്ഷത്രമാണ്‌ സൂര്യൻ. വർഷാവർഷങ്ങളിൽ മാറികൊണ്ടിരിക്കുന്നതും ഒരോ സോളാർ മാക്സിമത്തിനോടുത്തും (ഏതാണ്ട് 11 വർഷങ്ങൾ കൂടുമ്പോൾ) ദിശമാറുന്നതുമായ ശക്തമായ കാന്തികക്ഷേത്രം ഇതിനുണ്ട്.[63] സൗരകളങ്കം, സൗരജ്വാല തുടങ്ങിയവയുൾപ്പെടുന്ന സൗരപ്രവർത്തനങ്ങൾക്കും സൗരക്കാറ്റിലെ വ്യതിയാനങ്ങൾക്കും കാരണമാകുന്നത് ഈ കാന്തികക്ഷേത്രമാണ്‌.[64] സൗരപ്രവർത്തനങ്ങൾ കാരണമായി അറോറ, റേഡിയോ വാർത്താവിനിമയങ്ങളിലും ഊർജ്ജവിതരണ സം‌വിധാനങ്ങളിലും തടസ്സങ്ങളുളവാകുക തുടങ്ങിയ വിവിധ പ്രതിഭാസങ്ങൾ ഭൂമിയിൽ അരങ്ങേറാറുണ്ട്. സൗരയൂഥ രൂപവത്കരണത്തിലും പരിണാമത്തിലും സൗരപ്രവർത്തങ്ങൾ വലിയ പങ്കുവഹിച്ചിട്ടുണ്ടാകുമെന്ന് കരുതുന്നു. ഭൂമിയുടെ ബാഹ്യാന്തരീക്ഷത്തിന്റെ ഘടനയിൽ വ്യത്യാസം വരാനും സൗരപ്രവർത്തനങ്ങൾ കാരണമാകാറുണ്ട്.[65]

ഉയർന്ന താപനിലയിൽ പ്ലാസ്മയുടേയും വാതകങ്ങളുടെയും രൂപത്തിലാണ്‌ സൂര്യനിലെ ദ്രവ്യം സ്ഥിതിചെയ്യുന്നത്. ഇതുവഴി മധ്യ രേഖാഭാഗങ്ങൾക്ക് ഉയർന്ന അക്ഷങ്ങളേക്കാൾ വേഗത്തിൽ ഭ്രമണ ചെയ്യാൻ സാധിക്കുന്നു (മധ്യരേഖാഭാഗത്ത് ഭ്രമണദൈർഘ്യം 25 ദിവസവും ധ്രുവങ്ങളിൽ അത് 35 ദിവസവുമാണ്‌). ഇങ്ങനെയുള്ള വ്യത്യസ്ത ഭ്രമണങ്ങൾ സമയം ചെല്ലുംതോറും കാന്തികക്ഷേത്ര രേഖകൾ പിണയുവാൻ കാരണമാകുന്നു, ഇത് സൗരോപരിതലത്തിലെ കാന്തികക്ഷേത്ര ലൂപ്പുകളിൽ പ്രതിബന്ധം സൃഷ്ടിക്കുവാൻ കാരണമാകുകയും കാന്തിക പുനർബന്ധനങ്ങളെത്തുടർന്ന് സൗരകളങ്കങ്ങൾ പോലെയുള്ള പ്രതിഭാസങ്ങൾക്ക് കാരണമാകുകയും ചെയ്യുന്നു. കാന്തികക്ഷേത്രങ്ങളുടെ ഈ പിണച്ചിലുകൾ സൗര ഡൈനാമോക്കും 11 വർഷങ്ങൾ കൂടുമ്പോൾ സൗര കാന്തികക്ഷേത്രം വിപരീത ദിശയിലാകുന്നതിനു കാരണമാകുന്ന 11 വർഷത്തെ ഇടവേളയുള്ള സൗചക്രത്തിനും കാരണമാകുന്നു.[66][67]

സൂര്യനിൽ നിന്നും വളരെയകന്നും സൗരകാന്തികക്ഷേത്രം വ്യാപിക്കുന്നുണ്ട്. കാന്തീകരിക്കപ്പെട്ട സൗര പ്ലാസ്മ സൂര്യന്റെ കാന്തികക്ഷേത്രത്തെ ബഹിരാകശത്തേക്ക് വഹിച്ചുകൊണ്ടു പോകുന്നു, ഇത് ഗ്രഹാന്തര കാന്തികക്ഷേത്രത്തിന്റെ രൂപവത്കരണത്തിനു കാരണമാകുന്നു.[60] കാന്തികക്ഷേത്ര രേഖകൾക്കനുസരിച്ചു മാത്രമേ പ്ലാസ്മയ്ക്ക് സഞ്ചരിക്കാനാവൂ എന്നതിനാൽ ഗ്രഹാന്തര കാന്തികക്ഷേത്രം ആരംഭത്തിൽ അതിനനുസരിച്ച് സൂര്യനിൽ നിന്നും അകന്നുപോകുന്നു. സൗരമധ്യരേഖയ്ക്ക് മീതേയും കീഴെയുമുള്ള കാന്തികക്ഷേത്രങ്ങൾ സൂര്യനു നേരെയായും സൂര്യനിൽ നിന്നും പുറമേക്കുമായും വ്യത്യസ്ത പൊളാരിറ്റി ആയതിനാൽ സൗര മധ്യരേഖയുടെ തലത്തിൽ ഹീലിയോസ്ഫെറിക്ക് കറന്റ് ഷീറ്റ് എന്ന ഒരു നേർത്ത തലം രൂപപ്പെടുന്നു.[60] സൂര്യന്റെ ഭ്രമണം വഴി വലിയ ദൂരത്തേക്ക് കാന്തികക്ഷേത്രത്തേയും കറന്റ് ഷീറ്റിനേയും പിണച്ച് പാർക്കർ സർപ്പിളം എന്ന ആർക്കിമീഡിയൻ സർപ്പിളാകാരം സൃഷ്ടിക്കുന്നു.[60] ഇരട്ട ധ്രുവങ്ങളോട് കൂടിയ സൗരകാന്തികക്ഷേത്രത്തേക്കാൾ ശക്തമാണ്‌ ഗ്രഹാന്തര കാന്തികക്ഷേത്രം. പ്രഭാമണ്ഡലത്തിൽ 50–400 μT ഉള്ള ഇരട്ടധ്രുവ കാന്തികക്ഷേത്രം ദൂരത്തിന്റെ ഘനനിരക്കിൽ കുറയുന്നു, ഭൂമിയുടെ അത്ര അകലെത്തെത്തുമ്പോൾ 0.1 nT ആണ്‌ അതിന്റെ ശക്തി. പക്ഷേ ഭൂമിയുടെ സമീപമുള്ള ഗ്രഹാന്തര കാന്തികക്ഷേത്രം 5 nT ആണ്‌.[68]

Other Languages
Аҧсшәа: Амра
адыгабзэ: Тыгъэ
Afrikaans: Son
Akan: Ewia
Alemannisch: Sonne
አማርኛ: ፀሐይ
aragonés: Sol
Ænglisc: Sunne
العربية: الشمس
ܐܪܡܝܐ: ܫܡܫܐ
مصرى: الشمس
অসমীয়া: সূৰ্য
asturianu: Sol
Atikamekw: Pisimw
авар: Бакъ
Aymar aru: Willka
azərbaycanca: Günəş
تۆرکجه: گونش
башҡортса: Ҡояш
Boarisch: Sun
žemaitėška: Saulė
Bikol Central: Saldang
беларуская: Сонца
беларуская (тарашкевіца)‎: Сонца
български: Слънце
भोजपुरी: सुरुज
Bahasa Banjar: Matahari
বাংলা: সূর্য
བོད་ཡིག: ཉི་མ།
brezhoneg: Heol
bosanski: Sunce
буряад: Наран
català: Sol
Mìng-dĕ̤ng-ngṳ̄: Nĭk-tàu
нохчийн: Малх
Cebuano: Adlaw
ᏣᎳᎩ: ᏅᏓ
Tsetsêhestâhese: Éše'he
کوردی: خۆر
corsu: Soli
Nēhiyawēwin / ᓀᐦᐃᔭᐍᐏᐣ: ᒌᔑᑳᐅᐲᓯᒽ
qırımtatarca: Küneş
čeština: Slunce
kaszëbsczi: Słuńce
словѣньскъ / ⰔⰎⰑⰂⰡⰐⰠⰔⰍⰟ: Слъньцє
Чӑвашла: Хĕвел
Cymraeg: Haul
dansk: Solen
Deutsch: Sonne
Zazaki: Tici
डोटेली: सूर्य
ދިވެހިބަސް: އިރު
Ελληνικά: Ήλιος
emiliàn e rumagnòl: Såul
English: Sun
Esperanto: Suno
español: Sol
eesti: Päike
euskara: Eguzkia
estremeñu: Sol
فارسی: خورشید
Fulfulde: Naange
suomi: Aurinko
Võro: Päiv
føroyskt: Sólin
français: Soleil
arpetan: Solely
Nordfriisk: San
furlan: Soreli
Frysk: Sinne
Gaeilge: An Ghrian
贛語: 太陽
Gàidhlig: Grian
galego: Sol
Avañe'ẽ: Kuarahy
𐌲𐌿𐍄𐌹𐍃𐌺: 𐍃𐌿𐌽𐌽𐍉
ગુજરાતી: સૂર્ય
Gaelg: Yn Ghrian
Hausa: Rana
客家語/Hak-kâ-ngî: Ngit-tèu
Hawaiʻi:
עברית: השמש
हिन्दी: सूर्य
Fiji Hindi: Suraj
hrvatski: Sunce
Kreyòl ayisyen: Solèy
magyar: Nap
Հայերեն: Արեգակ
interlingua: Sol
Bahasa Indonesia: Matahari
Interlingue: Sole
Ilokano: Init
ГӀалгӀай: Малх
Ido: Suno
íslenska: Sólin
italiano: Sole
ᐃᓄᒃᑎᑐᑦ/inuktitut: ᓯᕿᓂᖅ
日本語: 太陽
Patois: Son
la .lojban.: solri
Basa Jawa: Srengéngé
ქართული: მზე
Qaraqalpaqsha: Quyash
Taqbaylit: Iṭij
Kabɩyɛ: Wɩsɩ
Kongo: Ntangu
қазақша: Күн (жұлдыз)
ភាសាខ្មែរ: ព្រះអាទិត្យ
ಕನ್ನಡ: ಸೂರ್ಯ
한국어: 태양
Перем Коми: Шонді
къарачай-малкъар: Кюн
Ripoarisch: Sunn
kurdî: Roj (stêrk)
коми: Шонді
kernowek: Howl
Кыргызча: Күн
Latina: Sol
Ladino: Sol
Lëtzebuergesch: Sonn
лезги: Рагъ
Lingua Franca Nova: Sol
Limburgs: Zon
Ligure:
lumbaart: Suu
lingála: Mói
lietuvių: Saulė
latgaļu: Saule
latviešu: Saule
मैथिली: सूर्य
Basa Banyumasan: Srengenge
мокшень: Шись
Malagasy: Masoandro
македонски: Сонце
монгол: Нар
मराठी: सूर्य
Bahasa Melayu: Matahari
Malti: Xemx
Mirandés: Sol
မြန်မာဘာသာ: နေ
مازِرونی: خورشید
Dorerin Naoero: Ekwan
Nāhuatl: Tōnatiuh
Napulitano: Sole
Plattdüütsch: Sünn
Nedersaksies: Zunne
नेपाली: सूर्य
नेपाल भाषा: सूर्द्य
Nederlands: Zon
norsk nynorsk: Sola
norsk: Solen
Novial: Sune
Nouormand: Solé
Diné bizaad: Jóhonaaʼéí
occitan: Soleu
Livvinkarjala: Päiväine
ଓଡ଼ିଆ: ସୂର୍ଯ୍ୟ
Ирон: Хур
ਪੰਜਾਬੀ: ਸੂਰਜ
Kapampangan: Aldo
Papiamentu: Solo
Picard: Solel
Deitsch: Sunn
Pälzisch: Sunn
polski: Słońce
Piemontèis: Sol
پنجابی: سورج
Ποντιακά: Ήλος
پښتو: لمر
português: Sol
Runa Simi: Inti
rumantsch: Sulegl
Romani: Kham
română: Soare
armãneashti: Soari
русский: Солнце
русиньскый: Сонце
संस्कृतम्: सूर्यः
саха тыла: Күн (сулус)
sardu: Sole
sicilianu: Suli
Scots: Sun
سنڌي: سج
davvisámegiella: Beaivváš
srpskohrvatski / српскохрватски: Sunce
සිංහල: හිරු
Simple English: Sun
slovenčina: Slnko
slovenščina: Sonce
chiShona: Zuva
Soomaaliga: Qorax
shqip: Dielli
српски / srpski: Сунце
Seeltersk: Sunne
Basa Sunda: Panonpoé
svenska: Solen
Kiswahili: Jua
ślůnski: Słůńce
ತುಳು: ಸೂರ್ಯ
తెలుగు: సూర్యుడు
тоҷикӣ: Офтоб
Türkmençe: Gün (ýyldyz)
Tok Pisin: San
Türkçe: Güneş
татарча/tatarça: Кояш
chiTumbuka: Zuwa
Twi: Ewia
тыва дыл: Хүн (сылдыс)
удмурт: Шунды
ئۇيغۇرچە / Uyghurche: قۇياش
українська: Сонце
اردو: سورج
oʻzbekcha/ўзбекча: Quyosh
vèneto: Sołe
vepsän kel’: Päiväine
Tiếng Việt: Mặt Trời
West-Vlams: Zunne
Volapük: Sol
walon: Solea
Wolof: Jant
吴语: 太陽
хальмг: Нарн
isiXhosa: UKat
მარგალური: ბჟა
ייִדיש: זון
Yorùbá: Òrùn
Vahcuengh: Daengngoenz
Zeêuws: Zunne
中文: 太阳
文言:
Bân-lâm-gú: Ji̍t-thâu
粵語: 太陽
isiZulu: Ilanga