Движење (физика)

За движењето во живиот свет, видете Движење.

Движењето е промена на положбата, како во случај со овој брзодвижечки воз.

Во физиката, под движење се подразбира постојана промена на местоположбата на едно тело. Промената во движењето е резултат на сила применета врз тоа тело. Движењето најчесто се опишува во рамките на фреквенција (или брзина), забрзување (акцелерација), поместување и време. Брзината на еден објект (или материјална точка) не може да се смени доколку на него не се дејствува со некоја сила, факт кој всушност го претставува Првиот Њутнов закон. Импулсот (моментумот) на објектот е директно поврзан со неговата маса и брзина, а вкупниот импулс на сите објекти во еден затворен систем (систем на кој не делуваат надворешни сили) не се менува со текот на времето, факт олицетворен во законот за зачувување на импулсот.

За тело кое не се движи, се вели дека се одмора, дека е неподвижно, стационарно или дека има постојана положба, независна од времето.

Движењето секогаш се набљудува и мери од аспект на некое референтно тело. Бидејќи не постои апсолутно референтно тело, апсолутното движење не може да се определи. Ова е опишано со терминот релативно движење. Тело кое е неподвижно во однос на едно референтно тело се движи релативно до бесконечно во однос на други референтни тела. Според ова, сѐ се движи во универзумот.

Закони на движењето

Движењето во универзумот во физиката се опишува преку две групи на контрадикторни закони на механиката. Движењата на сите крупни (големи) и познати објекти во универзумот (како проектили, планети, клетки и луѓе) се опишани во класичната механика. За разлика од нив, движењата на многу малите атомски и субатомски објекти се опишуваат од страна на квантната механика.

Класична механика

Crystal Clear app xmag.svg Главна статија: „Класична механика.

Класичната механика ги опишува движењата на макроскопските објекти, од проектили до делови на машинерии, како и астрономски објекти ( вселенски бродови, планети, ѕвезди и галаксии). Таа дава многу прецизни резултати во рамките на овие домени и е еден од најстарите и најголеми предмети во науката, инженерството и технологијата.

Класичната механика во основа е базирана на Њутновите закони на движењето. Овие закони ја опишуваат врската која постои меѓу силите што дејствуваат на дадено тело и движењето на тоа тело. Њутновите закони гласат:

  1. Во отсуство на вкупна надворешна сила, телото или мирува или се движи со константна брзина;
  2. Вкупната надворешна сила што дејствува на телото е еднаква на масата на тоа тело помножена со неговото забрзување; F = ma. Друг начин на искажување на овој закон: силата е пропорционална со изводот на времето на импулсот;
  3. Кога едно тело дејствува со сила F на друго тело, другото тело дејствува со сила -F на првото тело. F и -F се еднакви по јачина, но спротивни по насока.

Њутновите три закони на движењето, заедно со неговиот универзален закон за гравитацијата, ги објаснуваат Кеплеровите закони на движење на планетите, кои за прв пат на прецизен начин дале математички модел или сфаќање за телата што орбитираат во вселената. Ова објаснување ги обединило движењата на вселенските тела и движењата на објектите на Земјата.

Подоцна класичната механика е развиена со законите на специјална релативност и општа релативност на Алберт Ајнштајн. Специјалната релативност го објаснува движењето на објектите со голема брзина, која се приближува до брзината на светлината, додека општата релативност го засега гравитациското движење на подлабоко ниво.

Квантна механика

Crystal Clear app xmag.svg Главна статија: „Квантна механика.

Квантната механика подразбира група на принципи кои ја опишуваат физичката реалност на атомско ниво на материјата (молекули и атоми) и на субатомско (електрони, протони, па дури и помали честици). Во овие описи спаѓаат симултаното брановидно и честицовидното однесување како на материјата, така и на радијационата енергија - ова се опишува со помош на корпускуларно-брановиот дуализам.

За разлика од класичната механика, каде положбата и брзината можат да се пресметаат и предвидат на прецизен начин, во квантната механика на субатомска честица тие никогаш не можат да се одредат со целосна сигурност (ова се нарекува Хајзенбергов принцип на неодреденост).

Освен во опишувањето на движењето на феномените на атомско ниво, квантната механика е корисна за сфаќањето на некои макроскопски феномени, каков што е суперфлуидноста, суперспроводноста и биолошките системи, вклучувајќи ја и функцијата на мирисните рецептори и структурите на протеините.

Other Languages
Afrikaans: Beweging
Alemannisch: Bewegung (Physik)
العربية: حركة (فيزياء)
অসমীয়া: চলন
asturianu: Movimientu
azərbaycanca: Mexaniki hərəkət
বাংলা: গতি
Bân-lâm-gú: Tín-tāng
беларуская: Механічны рух
беларуская (тарашкевіца)‎: Мэханічны рух
български: Движение
bosanski: Kretanje
català: Moviment
Cymraeg: Mudiant
eesti: Liikumine
Ελληνικά: Κίνηση
Esperanto: Movado (fiziko)
euskara: Higidura
فارسی: حرکت
galego: Movemento
हिन्दी: गति (भौतिकी)
hrvatski: Gibanje
Ido: Movo
Bahasa Indonesia: Gerak
italiano: Moto (fisica)
ಕನ್ನಡ: ಚಲನೆ
മലയാളം: ചലനം
मराठी: गती
Bahasa Melayu: Pergerakan (fizik)
монгол: Хөдөлгөөн
norsk nynorsk: Rørsle i fysikk
português: Movimento
Runa Simi: Kuyuy
sardu: Movimentu
sicilianu: Motu (fìsica)
Simple English: Movement
slovenčina: Mechanický pohyb
slovenščina: Gibanje
کوردی: جووڵە
српски / srpski: Кретање
srpskohrvatski / српскохрватски: Gibanje
Basa Sunda: Gerak
Tagalog: Mosyon
తెలుగు: చలనం
тоҷикӣ: Ҳаракат
ತುಳು: ಚಲನೆ
Türkçe: Hareket (fizik)
Türkmençe: Mehaniki hereket
українська: Рух (механіка)
Tiếng Việt: Chuyển động
ייִדיש: באוועגונג
Yorùbá: Ìmúrìn
粵語: