용융염 원자로

용융염 원자로의 도해

용융염 원자로(Molten Salt Reactor, MSR)는 1차 냉각 계통으로 용융염을 사용하는 원자로 유형으로, 용융염의 낮은 증기압과 안정성, 그리고 액체 나트륨보다 반응성이 낮으며, 또한 고열을 뽑아낼 수 있어 높은 열효율을 보여준다. 이 원자로에서 사용되는 핵연료는 고체 연료봉을 쓰거나 아님 연료를 녹여 냉각제에다가 집어넣는데, 이렇게 함으로써 연료 집합체가 없어져 원자로 구조의 간소화, 연소도의 균일화, 그리고 원자로 작동중에도 재처리를 할 수 있게 되었다.

많은 디자인에서는, 연료를 UF4형태로 녹인후 용융된 불소염 화합물에 집어넣는 걸로 되어있다. 이 화합물은 감속재 역할을 하는 흑연 노심에서 임계가 된다. 용융염로는 잠재적인 원자로 사고는 줄어들지만, 잠재적 재처리중 사고는 증가하게 된다. [1] 최근의 많은 실험들은 고압에 저압을 가진 1차 계통에 초점을 두고 있는데, 많은 현대적 디자인들은 흑연구조에 세라믹 연료를 집어넣는 걸 신뢰하고 있다. 용융염은 노심에서 열을 빼내는 데 효과적일 뿐 아니라, 펌프와 파이프, 그리고 노심의 크기를 줄여 크기를 대폭 줄일 수 있다.

1954년 실행된 항공기 원자로 실험에서 영감을 얻은 작은 크기의 디자인을 발전시켜, 1965년에서 69년 용융염로 실험에서는 토륨 연료주기를 가진 증식로를 가진 원자력 발전소의 원형이 되었다. 4세대 원자로디자인 중 하나로 용융염과 고체 연료봉을 이용하는 원자로는 2025년까지 1000MWe의 원자로를 개발하기로 되어 있다.

용융염 원자로의 다른 장점은 작은 노심으로, 이점은 좀 더 많은 핵연료가 중성자를 흡수할 수 있도록 도와준다. 이점은 토륨 232가 우라늄 233으로 증식할 수 있는 요건이 된다. 그래서 작은 노심을 가진 용융염 원자로는 특히 토륨 연료주기에 적당한 원자로로 여겨지고 있다. 최근에는 용융염 원자로에 토륨 연료주기를 가동시키기 위해서 우라늄과 플루토늄을 집어넣지 않고 연료에 양성자 빔을 조사하여 생긴 중성자로 원자로를 가동시키는 구상도 진행되고 있다.

역사

항공기 원자로 실험

오크리지 국립 연구소의 항공기 원자로 실험 건물, 여기서 나중에 용융염로 실험이 개장되었다.

포괄적인 용융염로 실험은 미국의 항공기 원자로 실험에서 시작되었다. 이 실험에선 높은 출력밀도를 가진 2.5MWth의 원자로를 디자인하여 원자력 비행기의 연료로 사용하려고 하였다. 이 계획에선 여러 실험들을 내놓았는데, 그중 열 운반 원자로 실험들로, 엔진 실험용 원자로로 열운반용 원자로 실험 혹은 Heat Transfer Reactor Experiments로 불렸으며 HTRE-1, HTRE-2, HTRE-3 이 세개가 있다. 그중 하나가 녹은 불소염(NaF-ZrF4-UF4, 53-41-6 mol)을 연료로 쓴것이 있었는데, 이것은 베릴륨 산화물(BeO)를 감속재로 썼으며, 2차 냉각계통으로 액체 나트륨을 사용했다. 이 원자로의 최대 온도는 860도까지 올라갔으며, 1954년에 1000시간을 가동했다. 이 실험에선 인코넬 600 합금을 가지고 금속 구조물과 파이프를 만들었다.

용융염로 실험

MSRE 플랜트 도해

오크리지 국립 연구소에선 1960년대에 용융염로 실험을 하였으며, 그들의 용융염로 실험이 정점에 오른 때이기도 하다. 이 실험에선 7.4MWth출력의 원자로를 가지고 토륨증식로에 대한 기술적인 점들을 실험했다.여기에선 우라늄과 플루토늄이 용융된 연료를 사용하였다. 이 실험에서 233UF4을 이용한 토륨 연료주기의 경우 방사성 폐기물도 적고, 반감기도 50년 이내인점을 밝혀내었다. 최고 온도가 650도인 이 원자로는 가스터빈과 같은 높은 열효율을 보였다. 이 실험에서는 하스텔로이-N을 사용하여 파이프, 노심통 그리고 금속 구조물을 만들었으며, 파이로리틱 흑연을 감속재로 사용하였다. 이 원자로는 1965년 임계에 들어가 4년동안 가동하였다. 이 원자로의 연료는 Lif-BeF2-ZrF4-UF4 (65-30-5-0.1)을 사용하였으며, 2차 냉각계통으로 FLiBe(2Lif-BeF2)을 사용하였다. 이 원자로의 최고 온도는 650도였으며, 최대 출력으로 1.5년에 상당하는 가동을 할 수 있었다.

오크리지 국립 실험실 원자로

1970~76년에 LiF-BeF2-ThF4-UF4을 연료로 하며, 흑연을 감속재로 사용하며 작동년도 4년에 2차 냉각계통으로 NaF-NaBF4를 사용하는 용융염로의 디자인에 대한 오크리지 국립 실험실의 실험은 정점을 찍었다. 이 원자로의 최대 온도는 705도를 기록하였다. [2]

후지 MSR

후지 MSR(Fuji MSR)은 100 MWe의 출력을 지닌 토륨 연료주기를 이용한 증식 용융염로 디자인으로, 오크리지 국립 실험실의 원자로와 기술적으로 유사하다. 이 원자로는 일본, 미국, 러시아 이 세 국가의 컨소시엄에서 개발하였다. 증식로로 이 원자로는 토륨을 핵연료로 전환시켰다. [3] 또한 원자로로서 중성자 조절에 의한 고유의 안정성도 있었다. 대부분의 용융염로가 그렇듯, 화학적으로 안정되어 있으며 저압에 핵폭발과 독소에 내성을 가지고 있었다. [4] 이 원자로는 원래 계획된 크기로 만들기 위해 20년을 개발하기로 되어 있는데 [5] 재정에 문제를 겪고 있다 [6]

En otros idiomas