순서수

이하의 순서수들의 형상화

집합론에서, 순서수(順序數, 영어: ordinal)는 정렬 전순서 집합들의 "길이"를 측정하는 의 일종이다. 자연수를 확장하며, 자연수들의 정렬 전순서 집합과 같은 무한 정렬 전순서 집합들의 크기를 측정하는 무한 순서수들이 존재한다.

자연수집합크기를 표현하기 위해 사용되기도 하고, 에서 원소의 위치를 나타내기 위해 사용되기도 한다. 이 두 쓰임새는 유한 집합의 경우 크게 다르지 않으나, 무한 집합의 경우에는 이 구분이 중요해진다. 전자를 확장한 것이 기수이고, 후자를 확장한 것이 순서수이다.

기수는 아무런 구조도 갖지 않는 집합에 대해서도 부여할 수 있지만, 순서수는 정렬 전순서 집합에 대해서만 정의되며, 정렬 전순서의 개념과 순서수의 개념에는 매우 밀접한 관련이 있다. 간단히 말해, 정렬 전순서란 무한히 감소하는 수열이 존재하지 않는 전순서를 말한다. (물론 무한히 증가하는 수열은 존재할 수 있다.) 임의의 전순서 집합에서 최소 원소를 0이라 하고 그 다음 원소를 1이라 하는 식으로 그 집합의 원소들을 순서수를 이용해 순서매길 수 있으며, 이 집합의 "길이"를 여기에서 집합의 원소에 대응되지 않는 가장 작은 순서수로 정의할 수 있다. 이 "길이"를 집합의 순서형이라고 한다.

En otros idiomas
العربية: عدد ترتيبي
azərbaycanca: Sıra sayı
Cymraeg: Trefnolyn
Deutsch: Ordinalzahl
Esperanto: Ordonombro
suomi: Ordinaali
français: Nombre ordinal
עברית: מספר סודר
Bahasa Indonesia: Bilangan ordinal
íslenska: Raðtala
日本語: 順序数
қазақша: Ординал сан
македонски: Реден број
Bahasa Melayu: Nombor ordinal
Nederlands: Ordinaalgetal
português: Número ordinal
română: Număr ordinal
slovenščina: Ordinalno število
svenska: Ordinaltal
Türkçe: Sıral sayı
українська: Порядкове число
ייִדיש: סדרדיקע צאל
中文: 序数
文言: 序數