베이즈 정리

확률론통계학에서, 베이즈 정리( 영어: Bayes’ theorem)는 두 확률 변수사전 확률사후 확률 사이의 관계를 나타내는 정리다. 베이즈 확률론 해석에 따르면 베이즈 정리는 사전확률로부터 사후확률을 구할 수 있다. [1]

베이즈 정리는 불확실성 하에서 의사결정문제를 수학적으로 다룰 때 중요하게 이용된다. 특히, 정보와 같이 눈에 보이지 않는 무형자산이 지닌 가치를 계산할 때 유용하게 사용된다. 전통적인 확률이 연역적 추론에 기반을 두고 있다면 베이즈 정리는 확률임에도 귀납적, 경험적인 추론을 사용한다. [2]

정의

확률공간 속에서 가측 집합이라고 하고, 이라고 하자. 그렇다면, 베이즈 정리에 따라 다음이 성립한다.

각각의 항은 다음과 같은 의미를 갖는다.

  • A사전 확률로, 아직 사건 B에 관한 어떠한 정보도 알지 못하는 것을 의미한다.
  • B의 값이 주어진 경우에 대한 A사후 확률이다.
  • A가 주어졌을 때 B조건부 확률이다.
    • 가 주어졌을 때 가능도이다.
  • B사전 확률이며, 정규화 상수의 역할을 한다. 이 값은 를 이용하여 구할 수 있다.

이때 는 불확실성을 계산해야 하는 대상이며, 는 관측하여 값을 알아낼 수 있는 대상으로 생각한다면, 의 확률은 가 관측된 후 에서 로 변화하며, 베이즈 정리는 이 때의 변화를 계산하는 방법을 제공한다.

En otros idiomas
aragonés: Teorema de Bayes
العربية: مبرهنة بايز
беларуская: Тэарэма Баеса
беларуская (тарашкевіца)‎: Тэарэма Баеса
български: Теорема на Бейс
čeština: Bayesova věta
Ελληνικά: Θεώρημα Μπέυζ
فارسی: قضیه بیز
Gaeilge: Teoirim Bayes
עברית: חוק בייס
magyar: Bayes-tétel
Bahasa Indonesia: Teorema Bayes
íslenska: Formúla Bayes
lietuvių: Bajeso teorema
Nederlands: Theorema van Bayes
Piemontèis: Fórmola ëd Bayes
português: Teorema de Bayes
Simple English: Bayes' theorem
српски / srpski: Бајесова теорема
Basa Sunda: Téoréma Bayes
svenska: Bayes sats
Türkçe: Bayes teoremi
українська: Теорема Баєса
Tiếng Việt: Định lý Bayes
吴语: Bayes定理