環論

数学において、環論(かんろん、: ring theory)は(加法と乗法が定義され、整数の持つ性質とよく似た性質を満足する代数的構造である)を研究する学問分野である。環論の研究対象となるのは、環の構造や環の表現(環上の加群)などについての一般論、および(群環可除環普遍展開環などの)具体的な特定の環のクラスあるいは理論と応用の両面で興味深い様々な環の性質(たとえばホモロジー的性質や多項式の等式)などである。

可換環は非可換の場合と比べてその性質はよく調べられている。可換環の自然な例を多く提供する代数幾何学代数的数論は可換環論の発展の大きな原動力であった。この二つは可換環に密接に関係する分野であるから、一般の環論の一部というよりは、可換環論や可換体論の一部と考えるほうが普通である。

非可換環は可換の場合と比べて奇妙な振る舞いをすることが多くあるので、その理論は可換環論とは極めて毛色の異なったものとなる。非可換論は、それ自身の独自の方法論を用いた発展をする一方で、可換環論の方法論に平行する形で(仮想的な)「非可換空間」上の函数環として幾何学的な方法である種の非可換環のクラスを構築するという方法論が新興している。このような傾向は1980年代の非可換幾何学の発展と量子群の発見に始まる。こうした新たなパラダイムは、非可換環(特に非可換ネーター環)のよりよい理解を導くこととなった (Goodearl 1989)。

他の言語で
asturianu: Teoría d'aníos
English: Ring theory
Esperanto: Ringa teorio
한국어: 환론
Nederlands: Ringtheorie
português: Teoria dos anéis
română: Inel (algebră)
русский: Теория колец
Simple English: Ring theory
svenska: Ringteori
українська: Теорія кілець
Tiếng Việt: Lý thuyết vành
中文: 环论