固有値

図 1. モナ・リザの画像を平行四辺形に変換したところ。画像の中にある上向きの矢印(赤色)は変化していないのに対し、ななめ右上を向いた矢印(青色)は方向が変化している。この赤い矢印がこの変換における固有ベクトルであり、青い矢印は固有ベクトルではない。ここで赤い矢印は伸張も収縮もしていないので、この固有値は 1 である。このベクトルと平行なすべてのベクトルは固有ベクトルである。ゼロベクトルも含めて、これらのベクトルはこの固有値に対する固有空間を形成する。

線型代数学において、線型変換の特徴を表す指標として固有値 (: eigenvalue) や固有ベクトル (: eigenvector) がある。この2つの用語を合わせて、固有対 (eigenpair) という。与えられた線型変換の固有値および固有ベクトルを求める問題のことを固有値問題 (: eigenvalue problem) という。ヒルベルト空間論において線型作用素 あるいは線型演算子と呼ばれるものは線型変換であり、やはりその固有値や固有ベクトルを考えることができる。固有値という言葉は無限次元ヒルベルト空間論や作用素代数におけるスペクトルの意味でもしばしば使われる。

他の言語で
беларуская: Уласны вектар
беларуская (тарашкевіца)‎: Уласныя лікі, вэктары і прасторы
עברית: ערך עצמי
Bahasa Indonesia: Nilai dan vektor Eigen
íslenska: Eigen gildi
한국어: 고윳값
norsk: Egenvektor
slovenščina: Lastna vrednost
українська: Власний вектор
اردو: ویژہ قدر
Tiếng Việt: Vectơ riêng
粵語: 特徵向量