マクスウェル分布

マクスウェル分布
確率密度関数
Maxwell-Boltzmann distribution pdf.svg
累積分布関数
Maxwell-Boltzmann distribution cdf.svg
母数
確率密度関数
累積分布関数
テンプレートを表示

マクスウェル分布(マクスウェルぶんぷ、: Maxwell distribution[1])とは、熱力学的平衡状態において、気体分子速度が従う分布関数である。マクスウェル=ボルツマン分布: Maxwell-Boltzmann distribution[1])と呼ばれることもある。気体分子運動論により導かれたが、より一般化されたボルツマン分布からも導かれる。最初に見いだしたイギリスの物理学者J.C.マクスウェルにちなんで名付けられた。

導出

気体分子運動論では、成分を vx, vy, vz とする速度ベクトル v について、x 方向の速度成分 vx の分布は、分子の質量を mボルツマン定数k絶対温度T、定数項を A として

に従うことが知られており、この式は左右対称なつりがね状の正規分布になる。したがって、定数項 A を求めるには vx に関して積分した値が1になれば良いので[2][3]

より、A = m/2πkT となる。したがって、x 方向の速度成分 vx の分布は

となる[2][4]

また、x, y, z 方向の各速度の分布は互いに独立で、

が成り立つので、方向を指定しない3次元の速さ v の分布は

となる[2]。ここで、dvxdvydvz は半径 v で厚さ dv の球殻の体積に相当するので、4πv2dv となり[5][3]、またスカラー量である速さ v の大きさは v = v 2
x
 
+ v 2
y
 
+ v 2
z
 
なので、マクスウェル分布は

より

となる[6][5][4][3]

速度分布

25℃における希ガス中での分子の速さの分布をプロットした図

分子の質量が大きく温度が低いほど分布は密になり、分子の質量が小さく温度が高いほど分布は疎になる。

他の言語で