Hilbert-tér

A Hilbert-tér a modern matematika fontos fogalma: olyan skalárszorzatos vektortér, mely teljes a skalárszorzat által definiált normára nézve. A Hilbert-tereket a funkcionálanalízis tanulmányozza. A Hilbert-térnek alapvető jelentősége van a kvantummechanika megalapozásában, jóllehet a kvantummechanika sok alapvető tulajdonsága megérthető a Hilbert-terek mélyebb megértése nélkül.[1]

Szerkezetét egyértelműen meghatározza a Hilbert-dimenziója. Ez tetszőleges kardinális szám lehet. Ha a dimenzió véges, akkor euklideszi vektortérről van szó. Sok területen, például a kvantummechanikában a megszámlálhatóan végtelen dimenziós Hilbert-teret használják. A Hilbert-tér egy eleme megadható a dimenziónak megfelelő számú valós, vagy komplex koordinátával. A vektorterekhez hasonlóan, ahol egy Hamel-bázisban megadott koordináták véges kivétellel nullák, egy Hilbert-tér ortonormált bázisában csak megszámlálható sok koordináta különbözhet nullától, és a koordináták négyzetesen összegezhetők.

Más nyelveken
English: Hilbert space
Afrikaans: Hilbert-ruimte
العربية: فضاء هيلبرت
azərbaycanca: Hilbert fəzası
dansk: Hilbertrum
Deutsch: Hilbertraum
Ελληνικά: Χώρος Χίλμπερτ
Esperanto: Hilberta spaco
lietuvių: Hilberto erdvė
Nederlands: Hilbertruimte
norsk nynorsk: Hilbertrom
norsk: Hilbertrom
پنجابی: ہلبرٹ سپیس
português: Espaço de Hilbert
română: Spațiu Hilbert
srpskohrvatski / српскохрватски: Hilbertov prostor
Simple English: Hilbert space
slovenčina: Hilbertov priestor
slovenščina: Hilbertov prostor
српски / srpski: Хилбертов простор
svenska: Hilbertrum
Türkçe: Hilbert uzayı
oʻzbekcha/ўзбекча: Gilbert fazosi
Tiếng Việt: Không gian Hilbert
粵語: 囂拔空間