Espectroscopia astronómica

A espectroscopia astronómica é a técnica de espectroscopia usada na astronomía. Dado que a espectroscopia queda ben descrita no seu propio artigo, aquí imos a centrarnos no seu uso na astronomía. O obxecto de estudo é o do espectro da radiación electromagnética, incluída a luz visible, que radia dende as estrelas e outros obxectos celestes. A espectroscopia pódese usar para coñecer moitas das propiedades das estrelas e galaxias distantes, tales coma a súa composición química e movemento, mediante efecto Doppler.

Estrelas

A espectroscopia astronómica comeza coas observacións iniciais de Isaac Newton da luz do Sol, dispersada por un prisma. Observou un arco iris de cor, e poida que incluso liñas de absorción. Estas bandas escuras que aparecen no espectro solar describiunas por primeira vez en detalle Joseph von Fraunhofer no 1814. A meirande parte dos espectros estelares comparten estas dúas características dominantes do espectro solar: emisión en tódalas lonxitudes de onda do espectro óptico (o continuum) con varias liñas de absorción discretas superpostas.

Denominacións orixinais de Fraunhofer (1817) para as liñas de absorción do espectro solar

Letra Lonxitude de onda (nm) Orixe química
A
759,37
O2 atmosférico
B
686,72
O2 atmosférico
C
656,28
hidróxeno alpha
D1
589,59
sodio neutro
D2
589,00
sodio neutro
E
526,96
ferro neutro
F
486,13
hidróxeno beta
G
431,42
molécula CH
H
396,85
calcio ionizado
K
393,37
calcio ionizado

Fraunhofer e Angelo Secchi estiveron entre os pioneiros da espectroscopia do Sol e outras estrelas. Lembrase especialmente a Secchi por clasifica-las estrelas en tipos espectrais, baseándose no número e forza das liñas de absorción de seu espectro. Máis tarde descubriuse que a orixe dos tipos espectrais estaba relacionado coa temperatura superficial da estrela: só se poden observar determinadas liñas de absorción dentro dun determinado rango de temperaturas; porque só nese rango se enchen os niveis enerxéticos atómicos relacionados.

As liñas de absorción nos espectros estelares poden ser usados para determina-la composición química dunha estrela. Cada elemento é responsable dun conxunto diferente de liñas de absorción no espectro, a lonxitudes de onda que se poden medir de forma extremadamente fiable mediante experimentos en laboratorio. Polo tanto, unha liña de absorción nunha lonxitude de onda concreta nun espectro estelar amosa que ese elemento debe estar presente. As liñas de absorción do hidróxeno (que se atopan na atmosfera de case calquera estrela) son particularmente importantes. As liñas do hidróxeno que se atopan dentro do espectro visible denomínanse liñas de Balmer.

No 1868, Sir Norman Lockyer observou fortes liñas amarelas no espectro solar que non vira nunca en experimentos no laboratorio. Deduciu que debía tratarse dun elemento descoñecido, ó que chamou helio, do grego helios (sol). O helio non foi detectado de xeito inequívoco na Terra ata 25 anos despois.

Na mesma década detectáronse liñas de emisión (unha verde, en particular) no espectro coronal durante as eclipses solares que non tiña correspondencia con ningunha liña espectral coñecida. De novo propúxose que isto era debido a un elemento descoñecido, denominado coronio de xeito provisorio. Non foi ata a década de 1930 que se descubriu que estas liñas proviñan de ferro e níquel moi ionizados, ionización debida ás temperaturas extremas da coroa solar.

En conxunto coa física atómica e os modelos de evolución estelar, a espectroscopia estelar usase actualmente para determinar unha multitude de propiedades estelares: a súa distancia, idade, luminosidade e taxa de perda de masa pódense estimar mediante estudos espectrais, e os estudos sobre efecto Doppler poden descubri-la presencia de compañeiros ocultos tales coma buratos negros e exoplanetas.

Other Languages