Tenseur des déformations

Le tenseur des déformations est un tenseur symétrique d'ordre 2 servant à décrire l'état de déformation local résultant de contraintes (efforts internes).

L'état de déformation d'un solide est décrit par un champ tensoriel, c'est-à-dire que le tenseur des déformations est défini en tout point du solide. On parle de ce fait de champ de déformation.

Dans le cadre de l'élasticité linéaire, le tenseur des déformations est relié au tenseur des contraintes par la loi de Hooke généralisée.

Définition de l'opérateur des déformations

Le tenseur des déformations vise à caractériser en un point la variation de longueur d'un segment à la suite de la transformation subie par le milieu. La déformation du milieu peut être décrite par la fonction (supposée suffisamment régulière) qui, à un point A du milieu, associe son transformé A' :

Soit un segment AB qui se transforme en A' B'. Le tenseur des déformations permet de quantifier . On a en effet :

On peut donc écrire :

est le gradient de la transformation . D'où :

On obtient donc, au premier ordre :

On pose :

est l'opérateur des déformations de Green-Lagrange. Il s'agit d'un tenseur symétrique réel, donc diagonalisable dans une base orthonormée. Les directions propres sont appelées directions principales de déformation.

Si on introduit le vecteur déplacement

on obtient :

en notant la dérivée partielle de et donc :