Polynôme cyclotomique

En mathématiques, plus précisément en algèbre commutative, le polynôme cyclotomique [1] usuel associé à un entier naturel n est le polynôme unitaire dont les racines complexes sont les racines primitives n-ièmes de l'unité. Son degré vaut φ(n), où φ désigne la fonction indicatrice d'Euler. Il est à coefficients entiers et irréductible sur . Lorsqu'on réduit ses coefficients modulo un nombre premier p ne divisant pas n, on obtient un polynôme unitaire (également appelé polynôme cyclotomique) à coefficients dans le corps fini Fp, et dont les racines sont les racines primitives n-ièmes de l'unité dans la clôture algébrique de ce corps, mais qui n'est plus nécessairement irréductible. Pour tout entier m, le polynôme Xm – 1 est le produit des polynômes cyclotomiques associés aux diviseurs de m.

L'analyse de ces polynômes permet la résolution de nombreux problèmes. Historiquement, la construction des polygones réguliers à la règle et au compas est celui qui a amené le développement du concept. Ils sont traditionnellement utilisés pour illustrer la théorie de Galois, la résolution d' équations algébriques et la structure des extensions abéliennes.

Histoire

Naissance de la notion

Le traité d'analyse des polynômes cyclotomiques

Carl Friedrich Gauss utilise dans ses Disquisitiones arithmeticae, parues en 1801, les polynômes cyclotomiques. Il apporte une contribution majeure à un problème ouvert depuis l'Antiquité : celui de la construction à la règle et au compas de polygones réguliers. Ces travaux servent de référence durant tout le siècle. Dans ce texte, Gauss détermine avec exactitude la liste des polygones constructibles, et donne une méthode effective pour leur construction jusqu'au polygone à 256 côtés. Ce problème de construction reçoit une réponse définitive en 1837 par Pierre-Laurent Wantzel [2].

Cette approche est novatrice et, à bien des égards, préfigure l'algèbre moderne :

Un polynôme n'apparaît plus comme un objet à part entière mais comme un élément d'un ensemble structuré. Si la notion d' anneau des polynômes n'est pas encore formalisée, sa structure euclidienne est découverte et représente l'outil de base de l'analyse de Gauss.

La résolution effective de l'équation cyclotomique conduit Gauss à considérer une structure finie : celle des permutations des racines. On les appelle maintenant période de Gauss. Là encore leurs propriétés algébriques permettent de trouver la solution. Cette approche préfigure l'utilisation de la théorie des groupes en algèbre et la théorie de Galois.

De nouvelles structures sont par la suite définies. La division euclidienne introduit la notion de reste et leur ensemble possède des propriétés algébriques fortes. Une telle structure est maintenant considérée comme un cas particulier de corps fini si le diviseur est un nombre premier. Gauss met en évidence de tels ensembles et utilise avant l'heure le transport de structure par morphisme entre deux anneaux pour montrer le caractère irréductible des polynômes cyclotomiques. Dans le même livre, il utilise ces mêmes structures pour résoudre un autre problème que Leonhard Euler n'était parvenu à formuler qu'à la fin de sa vie : celui de la loi de réciprocité quadratique.

Dès cette époque, de nombreuses applications sont proposées. L'utilisation de la géométrie ne se limite pas à la construction à la règle et au compas. Le polynôme cyclotomique d'indice quatre permet la construction d'un nouvel ensemble de nombres algébriques celui des entiers de Gauss. Une branche mathématique naît : la théorie algébrique des nombres, elle simplifie la résolution d' équations diophantiennes et permet d'en résoudre de nouvelles.

Polynôme cyclotomique et équation algébrique

La recherche de solutions à l' équation polynomiale est un problème qui remonte aux premiers développements sur les polynômes par les mathématiciens de langue arabe. Si l'on cite généralement Al-Khwârizmî ( 783 - 850) comme précurseur [3] avec la résolution de six équations canoniques puis Girolamo Cardano ( 1501 - 1576) pour la résolution du cas de degré trois [4] et Ludovico Ferrari ( 1522 - 1565) pour le quatrième degré, le cas général est resté longtemps mystérieux.

Joseph-Louis Lagrange ( 1736 - 1813) comprend que la résolution de ce problème général est intimement liée aux propriétés des permutations des racines [5]. Le cas particulier des polynômes cyclotomiques l'illustre. Le groupe des bonnes permutations, aujourd'hui appelé groupe de Galois, est non seulement commutatif mais même cyclique. Cette propriété, utilisée à travers le concept des périodes de Gauss, permet une résolution effective pour ce cas particulier.

Une analyse plus profonde par Paolo Ruffini [6] ( 1765 - 1822), Niels Henrik Abel [7] ( 1802 - 1829) et surtout par Évariste Galois [8] ( 1811 - 1832) montre que l'aspect commutatif du groupe est en fait une condition suffisante. Pour être précis, la condition indique que le groupe doit être décomposable en une suite de groupes emboîtés commutatifs. La question naturelle qui se pose alors est de déterminer les extensions du corps des rationnels dont le groupe de Galois est commutatif. Ces extensions sont appelées extensions abéliennes. La structure de corps associée au polynôme cyclotomique, appelée extension cyclotomique, en est un exemple. Qu'elle soit unique signifie que toute équation algébrique résoluble par radicaux se ramène d'une manière ou d'une autre à un polynôme cyclotomique. La réponse est positive : toute extension abélienne du corps des rationnels est un sous-corps d'une extension cyclotomique. La démonstration de ce résultat a demandé presque un demi-siècle d'efforts. Les artisans principaux sont Leopold Kronecker ( 1823 - 1891) et Heinrich Weber [9] ( 1842 - 1913).

Si l'analyse des extensions abéliennes finies se termine avec le XIXe siècle, elle laisse ouvert un large champ de questions, par exemple en arithmétique. Il apparaît alors nécessaire de généraliser la notion de corps cyclotomique sur les extensions infinies. Le sujet est ouvert par David Hilbert [10] ( 1862 - 1943). Cet axe de recherche est appelé la théorie des corps de classes. Cette théorie est l'une des plus fructueuses au XXe siècle. On peut citer par exemple le théorème de réciprocité  (en) d' Emil Artin [11] ( 1898 - 1962) qui résout le neuvième des problèmes de Hilbert ou, plus récemment, deux lauréats de la médaille Fields pour leurs travaux sur des généralisations de la théorie : Vladimir Drinfeld en 1990 et Laurent Lafforgue en 2002.