Icosaèdre |
Icosaèdre régulier | |
![]() | |
Type | |
---|---|
20 | |
30 | |
12 | |
Faces/sommet | 5 |
2 | |
{3,5} | |
5 | |
![]() ![]() ![]() ![]() ![]() | |
Ih | |
Propriétés | |
modifier ![]() |
En
Il existe un icosaèdre
Comme il a trois sommets par face, et cinq faces par sommet, le
Le squelette de l'icosaèdre régulier — l'ensemble de ses sommets reliés par ses arêtes — forme un
Le
Un autre solide de Platon a le même groupe de rotations que l'icosaèdre : le
Un icosaèdre se construit à l'aide de 20 triangles équilatéraux de même dimension. On commence par assembler 5 des triangles par leurs arêtes de telle manière qu'ils forment un bol avec une pointe en bas. Ainsi la base du solide est un sommet partagé par les 5 triangles et le bord est composé de 5 segments, tous de même longueur, formant un
On construit une deuxième forme identique à la première. On a alors utilisé l'intégralité des 20 triangles. La deuxième forme s'emboîte exactement dans la première, formant un polyèdre régulier. Il est illustré sur la figure 2, le bol inférieur est bleu. On remarque sa calotte inférieure, puis les 5 dents, dont 3 sont face à un observateur et 2 derrière. Le bol supérieur, en rouge sur la figure possède la même géométrie. Pour les emboiter, il suffit de placer la calotte en haut et 2 dents en face de l'observateur.
On peut encore construire l'icosaèdre à l'aide du patron illustré sur la figure 1. L'icosaèdre s'obtient en collant le côté libre du triangle jaune en haut à gauche sur le côté libre du triangle orange, en bas à droite. Les 5 triangles rouges, connexes aux triangles orange, sont alors approchés pour que leurs sommets libres se confondent en un seul point. La même opération, effectuée sur les 5 triangles rouges, connexes aux triangles jaunes, termine la construction de l'icosaèdre. Le patron présenté ici est un exemple, il en existe bien d'autres. On en trouve 43 380[1].
Un icosaèdre comporte 20 faces. Il possède 12 sommets, 1 en bas, 5 à la base inférieure des dents décrites dans la première construction et autant pour le bol supérieur. Il possède 30 arêtes : chacun des 12 sommets est commun à 5 arêtes, soit 60, mais comme une arête contient 2 sommets, il faut diviser 60 par 2 pour obtenir le bon résultat.
Sommets, arêtes et faces — Un icosaèdre régulier convexe contient 12 sommets, 30 arêtes et 20 faces. L'angle diédral (angle formé par deux faces adjacentes) est de 138,19°.
Les plus grands segments inclus dans le polyèdre ont tous pour extrémités deux sommets du polyèdre. Il en existe 6 et l'intersection de ces 6 segments est un point, appelé centre du polyèdre. Ce point est aussi le
Sphères circonscrite et inscrite — La sphère circonscrite à l'icosaèdre est de même centre que le solide et contient tous les sommets du polyèdre. La sphère inscrite dans l'icosaèdre a le même centre et contient le centre de chaque face de ce polyèdre.
Une analyse rapide pourrait laisser penser qu'il existe un cercle contenant 6 des sommets du polyèdre. Il n'en est rien : un cercle contient un maximum de 5 sommets. Cette erreur est, par exemple, commise par
Cube circonscrit — Le plus petit cube contenant l'icosaèdre est de même centre que le solide, sa surface contient tous les sommets du polyèdre.
Cette propriété est illustrée sur la figure 4. Chacune des faces du cube contient deux sommets et une arête du polyèdre. Le cube contient 6 faces, donc les 12 sommets.
La structure de ce polyèdre est régulière. Les arêtes possèdent toutes la même longueur, deux arêtes d'une même face et possédant un sommet commun forment toujours le même angle, égal à 60 degrés ou encore à π/3, si la mesure de l'angle est le
Solide de Platon — Il existe un icosaèdre régulier convexe.
Une
Rotations de l'icosaèdre — Il existe 60 rotations laissant l'icosaèdre (régulier convexe) globalement invariant : la rotation d'angle nul, 15 rotations d'un demi-tour, 20 rotations d'un tiers de tour et 24 rotations d'un angle multiple d'un cinquième de tour[4].
L'axe d'une telle rotation traverse nécessairement le centre du polyèdre et passe soit par un sommet, soit par le milieu d'une arête, soit par le milieu d'une face.
Étudions, dans un premier temps, les rotations (d'angle non nul) dont l'axe contient le centre d'une arête. Une telle rotation doit échanger les deux sommets de cette arête, donc c'est un demi-tour. Sur la figure 5, on a regroupé les sommets de l'icosaèdre dans des plans
Remarquons au passage qu'on peut regrouper 3 par 3 ces 15 demi-tours, par groupes de trois rotations d'axes deux à deux perpendiculaires, et qui par conséquent
La figure 6 illustre le cas d'une rotation (d'angle non nul) dont l'axe passe par le centre de deux faces opposées. Une telle rotation doit permuter les trois sommets de chacune de ces deux faces, donc c'est un tiers de tour. La même technique que celle utilisée précédemment regroupe cette fois-ci les sommets en quatre ensembles. Par construction, les deux ensembles extrêmes sont des faces. Ce sont des triangles équilatéraux de même taille et pivotés de demi-tour, l'un par rapport à l'autre. Les deux ensembles centraux, en violet sur la figure, sont aussi des triangles équilatéraux, plus grands. Une rotation d'un demi-tour est nécessaire pour faire coïncider deux triangles situés l'un à côté de l'autre.
Il existe 2 rotations d'un tiers de tour par paire de faces. Le solide contient 20 faces ; on en déduit qu'il existe 20 rotations de cette nature.
La figure 7 illustre le cas d'une rotation dont l'axe passe par deux sommets opposés. Une telle rotation doit permuter les cinq arêtes passant par chacun de ces deux sommets, donc c'est un multiple d'un cinquième de tour. Les sommets sont encore regroupés en 4 ensembles. Les deux extrêmes sont composés d'un unique point, les deux ensembles les plus proches du centre forment chacun un
Symétries impropres de l'icosaèdre — Il existe 60 symétries impropres laissant l'icosaèdre (régulier convexe) globalement invariant : la
En effet, les différentes illustrations précédentes montrent toutes que cette symétrie centrale laisse bien ce solide globalement invariant, et toute roto-inversion d'angle α (produit d'une rotation d'angle α par une symétrie de centre un point de l'axe) est une
Les symétries d'ordre 3 et 5 introduisent les figures géométriques planes associées à ces symétries.
Une symétrie plane d'ordre 3 a pour
Pour chaque paire de faces, on trouve 2 petits triangles équilatéraux et 2 grands, soit un total de 12 petits triangles équilatéraux et autant de grands.
La présence du nombre d'or n'est guère surprenante, elle intervient dans l'expression d'une rotation d'ordre 5 et par conséquent dans les rapports de dimensions d'un pentagone. Parallèlement à chaque axe passant par deux sommets opposés, on trouve deux pentagones dont le plan est orthogonal à l'axe. Chaque sommet du pentagone est aussi un sommet de deux
On trouve aussi des
À l'aide d'un polyèdre régulier, il est possible d'en construire un nouveau, de sommets les centres des faces du solide initial. Le dual d'un solide de Platon est encore un solide de Platon.
Dans le cas d'un icosaèdre, le dual possède 20 sommets et chaque face est un pentagone régulier car chaque sommet est partagé par 5 arêtes. Le polyèdre obtenu est un
Une symétrie qui laisse globalement invariant l'icosaèdre laisse aussi invariant l'ensemble des milieux de ses faces. On en déduit que toute symétrie de l'icosaèdre est aussi une symétrie du dodécaèdre. Réciproquement, le même raisonnement montre que toute symétrie du dodécaèdre est aussi une symétrie de l'icosaèdre. Les deux ensembles d'isométries, associés aux deux polyèdres duaux sont les mêmes. Ici, le terme de symétrie est utilisé au sens d'isométrie.