Extension quadratique

En mathématiques, et plus précisément en algèbre dans le cadre de la théorie de Galois, une extension quadratique est une extension finie de degré 2 d'un corps commutatif K, c'est-à-dire un corps contenant K et de dimension 2 en tant que K-espace vectoriel. Le corps K considéré est souvent celui des rationnels.

Une extension quadratique est un cas très simple d'extension de corps : c'est une extension simple, et elle est algébrique et normale car c'est un corps de décomposition. Sauf dans certains cas spécifiques à la caractéristique 2, elle est de plus séparable donc galoisienne, et même cyclique.

La notion d'extension quadratique possède de nombreuses applications ; on peut citer la théorie de Kummer ou les théorèmes de Wantzel et de Gauss-Wantzel.

Motivations

Dans tout cet article, le corps commutatif de base est noté K.

Une extension quadratique est le cas le plus simple d'extension algébrique. Il correspond au cas où l'extension est réalisée à partir d'un unique élément dont le carré est combinaison de lui-même et d'un élément du corps de base.

De plus, si la caractéristique est différente de 2, alors une telle extension possède toutes les bonnes propriétés des extensions de Galois. Il est possible d'établir tous les résultats principaux de la théorie avec des démonstrations largement plus simples. Cette théorie dépasse donc le cadre des extensions du corps des rationnels ou des réels.

Une première application a été trouvée par Gauss en 1801 dans l'étude de la constructibilité à la règle et au compas du n-polygone régulier, problème qui se ramène à l'analyse de l'équation cyclotomique correspondante. Le théorème de Gauss-Wantzel, qui répond à cette question, s'appuie sur le théorème de Wantzel, qui reformule la constructibilité en termes de tour d'extensions quadratiques.

Cette théorie possède de plus de nombreuses applications en théorie des nombres, comme la théorie de Kummer. Dans ce domaine, il existe encore des problèmes ouverts qui font l'objet de recherches.

Dans d'autres langues
العربية: حقل تربيعي
日本語: 二次体
한국어: 이차 수체
Nederlands: Kwadratisch veld
português: Corpo quadrático
українська: Квадратичне поле
中文: 二次域