Extension quadratique

En mathématiques, et plus précisément en algèbre dans le cadre de la théorie de Galois, une extension quadratique est une extension finie de degré 2 d'un corps commutatif K, c'est-à-dire un corps contenant K et de dimension 2 en tant que K-espace vectoriel. Le corps K considéré est souvent celui des rationnels.

Une extension quadratique est un cas très simple d'extension de corps : c'est une extension simple, et elle est algébrique et normale car c'est un corps de décomposition. Sauf dans certains cas spécifiques à la caractéristique 2, elle est de plus séparable donc galoisienne, et même cyclique.

La notion d'extension quadratique possède de nombreuses applications ; on peut citer la théorie de Kummer ou les théorèmes de Wantzel et de Gauss-Wantzel.

Dans d'autres langues
العربية: حقل تربيعي
日本語: 二次体
한국어: 이차 수체
Nederlands: Kwadratisch veld
português: Corpo quadrático
українська: Квадратичне поле
中文: 二次域