Analyse harmonique (mathématiques)

Page d'aide sur les redirections « Analyse harmonique » redirige ici. Pour la discipline musicale, voir Analyse harmonique (musique).
Analyseur harmonique mécanique de Lord Kelvin datant de 1878.

L'analyse harmonique est la branche des mathématiques qui étudie la représentation des fonctions ou des signaux comme superposition d'ondes de base. Elle approfondit et généralise les notions de série de Fourier et de transformée de Fourier. Les ondes de base s'appellent les harmoniques, d'où le nom de la discipline. Durant ces deux derniers siècles, elle a eu de nombreuses applications en physiques sous le nom d'analyse spectrale, et connaît des applications récentes notamment en traitement des signaux, mécanique quantique, neurosciences, stratigraphie… Des analyseurs harmoniques mécaniques ont vu le jour vers 1920 et permettaient d'obtenir graphiquement jusqu'au 150e coefficient d'un développement de Fourier[réf. nécessaire].

L'analyse harmonique, historiquement liée au développement de la théorie des séries de Fourier, a reçu un ensemble de généralisations modernes, notamment grâce aux travaux de l'école russe de Gelfand, qui la situe dans un contexte très général et abstrait : par exemple l'analyse harmonique sur les groupes de Lie.

Dans d'autres langues