Kroneckerin delta

Kroneckerin delta () on Leopold Kroneckerin mukaan nimetty matemaattinen kahden muuttujan, yleensä kokonaislukumuuttujan funktio, jonka arvo on 1, jos molemmat muuttujat ovat yhtä suuria, muutoin 0. Niinpä esimerkiksi , mutta . Kroneckerin delta käsitetään yleensä pikemminkin lyhennysmerkinnäksi kuin varsinaiseksi funktioksi.

Kroneckerin delta ilmaistaan tavanomaisesti yhtälöllä [1]

Toisinaan käytetään myös yhden muuttujan Kroneckerin deltaa, :

Kroneckerin deltaa käytetään monilla matematiikan aloilla, etenkin lineaarialgebrassa sekä myös signaalinkäsittelyssä.

Kroneckerin deltan ominaisuuksia

Matemaattisia sarjoja käsiteltäessä Kroneckerin deltalla on se huomattava ominaisuus, että jos j on mielivaltainen kokonaisluku, pätee mille tahansa lukusarjalle :

.

Jos kokonaislukujen joukko käsitetään mitta-avaruudeksi, jossa alkioiden lukumäärä ilmaisee osajoukon mitan, tämä yhtälö on analoginen Diracin deltafunktion kanssa, jolle määritelmän mukaan pätee:

Diracin deltafunktio onkin saanut nimensä tämän analogian perusteella.

Kroneckerin delta lineaarialgebrassa

Lineaarialgebrassa yksikkömatriisi on matriisi, jonka päälävistäjällä kaikki luvut ovat ykkösiä, muualla nollia:

Näin ollen matriisin i:nnellä rivillä j:nnessä sarakkeessa oleva alkio on 1, jos i = j, muutoin 0, toisin sanoen se on aina sama kuin Kroneckerin delta . Tämä matriisi voidaankin kirjoittaa lyhyesti muotoon ,

missä n on matriisin sarakkeiden ja samalla rivien lukumäärä.

Matriiseja käytetään ilmaisemaan lineaarikuvausten. Tämä Kroneckerin delta-matriisi vastaa tällöin identtistä kuvausta.

Integraaliesityksiä

Funktioteoreettisessa residylaskennassa on muutamia tärkeitä integraaleja, joiden arvo voidaan aina ilmaista Kroneckerin deltan avulla. Tällainen on erityisesti seuraava:

missä integrointi on suoritettu vastapäivään kompleksitason origon ympäri. Tämä voidaan yhtäpitävästi esittää myös seuraavasti:

mikä vastaa kompleksitason kiertoa origon ympäri.

Muilla kielillä