قضیه فیثاغورس

بر اساس قضیه فیثاغورس مجموع مساحت‌های دو مربع روی دو ضلع قائم (a و b)، برابر است با مساحت مربع روی وتر (c).

قضیهٔ فیثاغورس در هندسه و فضای اقلیدسی بخشی از صورت کلی قانون کسینوس‌ها هنگامی که زاویهٔ بین دو بردار ۹۰ درجه‌است می‌باشد. این قضیه به نام ریاضی‌دان یونانی فیثاغورس نامگذاری شده‌است. به سخن دیگر در یک مثلث راست‌گوشه (قائم الزاویه) همواره مجموع توان‌های دوم دو ضلع برابر با توان دوم وتر است.

قانون کسینوس‌ها بیان می‌کند که اگر دو بردار (یا خط) a و b در راس O تشکیل یک زاویه با نام A بدهند بردار تفاضل از رابطهٔ بدست می‌آید.

همان‌طور که می‌بینید هر گاه زاویه A برابر با ۹۰ درجه باشد مقدار صفر شده و در نتیجه صورت قضیهٔ فیثاغورس بدست می‌آید:

وارون این قضیه نیز درست است، به عبارت دیگر، اگر باشد، مثلث قائم‌الزاویه است. اثبات عکس قضیه فیثاغورس را به اقلیدس نسبت داده‌اند.[۱]

زبان های دیگر
Alemannisch: Satz des Pythagoras
azərbaycanca: Pifaqor nəzəriyyəsi
žemaitėška: Pėtaguora teuorema
беларуская: Тэарэма Піфагора
беларуская (тарашкевіца)‎: Тэарэма Пітагора
emiliàn e rumagnòl: Tioréma 'd Pitàgora
hornjoserbsce: Sada Pythagorasa
Bahasa Indonesia: Teorema Pythagoras
Lingua Franca Nova: Teorem de Pitagora
lietuvių: Pitagoro teorema
Bahasa Melayu: Teorem Pythagoras
davvisámegiella: Pythagorasa cealkka
srpskohrvatski / српскохрватски: Pitagorina teorema
Simple English: Pythagorean theorem
slovenčina: Pytagorova veta
slovenščina: Pitagorov izrek
Türkçe: Pisagor teoremi
татарча/tatarça: Pifagor teoreması
українська: Теорема Піфагора
oʻzbekcha/ўзбекча: Pifagor teoremasi
vepsän kel’: Pifagoran teorem
Tiếng Việt: Định lý Pythagoras
吴语: 勾股定理
中文: 勾股定理
文言: 勾股定理
Bân-lâm-gú: Pythagoras tēng-lí
粵語: 勾股定理