Vertebral column

Vertebral column
Illu vertebral column.jpg
The human vertebral column and its regions
Anatomy and physiology of animals Regions of a vertebral column.jpg
Vertebral column of a goat
LatinColumna vertebralis
vertebralis%20Entity%20TA98%20EN.htm Columna vertebralis
Anatomical terminology

The vertebral column, also known as the backbone or spine, is part of the axial skeleton. The vertebral column is the defining characteristic of a vertebrate in which the notochord (a flexible rod of uniform composition) found in all chordates has been replaced by a segmented series of bone: vertebrae separated by intervertebral discs.[1] The vertebral column houses the spinal canal, a cavity that encloses and protects the spinal cord.

There are about 50,000 species of animals that have a vertebral column.[2] The human vertebral column is one of the most-studied examples.


In a human's vertebral column there are normally thirty-three vertebrae;[3] the upper twenty-four are articulating and separated from each other by intervertebral discs, and the lower nine are fused in adults, five in the sacrum and four in the coccyx or tailbone. The articulating vertebrae are named according to their region of the spine. There are seven cervical vertebrae, twelve thoracic vertebrae and five lumbar vertebrae. The number of vertebrae in a region can vary but overall the number remains the same. The number of those in the cervical region however is only rarely changed.[4]

There are ligaments extending the length of the column at the front and the back, and in between the vertebrae joining the spinous processes, the transverse processes and the vertebral laminae.


Numbering order of the vertebrae of the human spinal column

The vertebrae in the human vertebral column are divided into different regions, which correspond to the curves of the spinal column. The articulating vertebrae are named according to their region of the spine. Vertebrae in these regions are essentially alike, with minor variation. These regions are called the cervical spine, thoracic spine, lumbar spine, sacrum and coccyx. There are seven cervical vertebrae, twelve thoracic vertebrae and five lumbar vertebrae. The number of vertebrae in a region can vary but overall the number remains the same. The number of those in the cervical region however is only rarely changed.[4] The vertebrae of the cervical, thoracic and lumbar spines are independent bones, and generally quite similar. The vertebrae of the sacrum and coccyx are usually fused and unable to move independently. Two special vertebrae are the atlas and axis, on which the head rests.

Anatomy of a vertebra

A typical vertebra consists of two parts: the vertebral body and the vertebral arch. The vertebral arch is posterior, meaning it faces the back of a person. Together, these enclose the vertebral foramen, which contains the spinal cord. Because the spinal cord ends in the lumbar spine, and the sacrum and coccyx are fused, they do not contain a central foramen. The vertebral arch is formed by a pair of pedicles and a pair of laminae, and supports seven processes, four articular, two transverse, and one spinous, the latter also being known as the neural spine. Two transverse processes and one spinous process are posterior to (behind) the vertebral body. The spinous process comes out the back, one transverse process comes out the left, and one on the right. The spinous processes of the cervical and lumbar regions can be felt through the skin.

Above and below each vertebra are joints called facet joints. These restrict the range of movement possible, and are joined by a thin portion of the neural arch called the pars interarticularis. In between each pair of vertebrae are two small holes called intervertebral foramina. The spinal nerves leave the spinal cord through these holes.

Individual vertebrae are named according to their region and position. From top to bottom, the vertebrae are:


The upper cervical spine has a curve, convex forward, that begins at the axis (second cervical vertebra) at the apex of the odontoid process or dens, and ends at the middle of the second thoracic vertebra; it is the least marked of all the curves. This inward curve is known as a lordotic curve.

A thoracic spine X-ray of a 57-year-old male.

The thoracic curve, concave forward, begins at the middle of the second and ends at the middle of the twelfth thoracic vertebra. Its most prominent point behind corresponds to the spinous process of the seventh thoracic vertebra. This curve is known as a kyphotic curve.

Lateral lumbar X-ray of a 34-year-old male.

The lumbar curve is more marked in the female than in the male; it begins at the middle of the last thoracic vertebra, and ends at the sacrovertebral angle. It is convex anteriorly, the convexity of the lower three vertebrae being much greater than that of the upper two. This curve is described as a lordotic curve.

The sacral curve begins at the sacrovertebral articulation, and ends at the point of the coccyx; its concavity is directed downward and forward as a kyphotic curve.

The thoracic and sacral kyphotic curves are termed primary curves, because they are present in the fetus. The cervical and lumbar curves are compensatory or secondary, and are developed after birth. The cervical curve forms when the infant is able to hold up its head (at three or four months) and to sit upright (at nine months). The lumbar curve forms later from twelve to eighteen months, when the child begins to walk.


Anterior surface

When viewed from in front, the width of the bodies of the vertebrae is seen to increase from the second cervical to the first thoracic; there is then a slight diminution in the next three vertebrae; below this there is again a gradual and progressive increase in width as low as the sacrovertebral angle. From this point there is a rapid diminution, to the apex of the coccyx.[5]

Posterior surface

From behind, the vertebral column presents in the median line the spinous processes. In the cervical region (with the exception of the second and seventh vertebrae) these are short, horizontal and bifid. In the upper part of the thoracic region they are directed obliquely downward; in the middle they are almost vertical, and in the lower part they are nearly horizontal. In the lumbar region they are nearly horizontal. The spinous processes are separated by considerable intervals in the lumbar region, by narrower intervals in the neck, and are closely approximated in the middle of the thoracic region. Occasionally one of these processes deviates a little from the median line — which can sometimes be indicative of a fracture or a displacement of the spine. On either side of the spinous processes is the vertebral groove formed by the laminae in the cervical and lumbar regions, where it is shallow, and by the laminae and transverse processes in the thoracic region, where it is deep and broad; these grooves lodge the deep muscles of the back. Lateral to the spinous processes are the articular processes, and still more laterally the transverse processes. In the thoracic region, the transverse processes stand backward, on a plane considerably behind that of the same processes in the cervical and lumbar regions. In the cervical region, the transverse processes are placed in front of the articular processes, lateral to the pedicles and between the intervertebral foramina. In the thoracic region they are posterior to the pedicles, intervertebral foramina, and articular processes. In the lumbar region they are in front of the articular processes, but behind the intervertebral foramina.[5]

Lateral surfaces

The sides of the vertebral column are separated from the posterior surface by the articular processes in the cervical and thoracic regions, and by the transverse processes in the lumbar region. In the thoracic region, the sides of the bodies of the vertebrae are marked in the back by the facets for articulation with the heads of the ribs. More posteriorly are the intervertebral foramina, formed by the juxtaposition of the vertebral notches, oval in shape, smallest in the cervical and upper part of the thoracic regions, and gradually increasing in size to the last lumbar. They transmit the special spinal nerves and are situated between the transverse processes in the cervical region, and in front of them in the thoracic and lumbar regions.[5]


There are different ligaments involved in the holding together of the vertebrae in the column, and in the column's movement. The anterior and posterior longitudinal ligaments extend the length of the vertebral column along the front and back of the vertebral bodies.[6] The interspinous ligaments connect the adjoining spinous processes of the vertebrae.[7][better source needed] The supraspinous ligament extends the length of the spine running along the back of the spinous processes, from the sacrum to the seventh cervical vertebra.[8] From there it is continuous with the nuchal ligament.


The striking segmented pattern of the spine is established during embryogenesis when somites are rhythmically added to the posterior of the embryo. Somite formation begins around the third week when the embryo begins gastrulation and continues until around 52 somites are formed. The somites are spheres, formed from the paraxial mesoderm that lies at the sides of the neural tube and they contain the precursors of spinal bone, the vertebrae ribs and some of the skull, as well as muscle, ligaments and skin. Somitogenesis and the subsequent distribution of somites is controlled by a clock and wavefront model acting in cells of the paraxial mesoderm. Soon after their formation, sclerotomes, which give rise to some of the bone of the skull, the vertebrae and ribs, migrate, leaving the remainder of the somite now termed a dermamyotome behind. This then splits to give the myotomes which will form the muscles and dermatomes which will form the skin of the back. Sclerotomes become subdivided into an anterior and a posterior compartment. This subdivision plays a key role in the definitive patterning of vertebrae that form when the posterior part of one somite fuses to the anterior part of the consecutive somite during a process termed resegmentation. Disruption of the somitogenesis process in humans results in diseases such as congenital scoliosis. So far, the human homologues of three genes associated to the mouse segmentation clock, (MESP2, DLL3 and LFNG), have been shown to be mutated in cases of congenital scoliosis, suggesting that the mechanisms involved in vertebral segmentation are conserved across vertebrates. In humans the first four somites are incorporated in the base of the occipital bone of the skull and the next 33 somites will form the vertebrae, ribs, muscles, ligaments and skin.[9] The remaining posterior somites degenerate. During the fourth week of embryogenesis, the sclerotomes shift their position to surround the spinal cord and the notochord. This column of tissue has a segmented appearance, with alternating areas of dense and less dense areas.

As the sclerotome develops, it condenses further eventually developing into the vertebral body. Development of the appropriate shapes of the vertebral bodies is regulated by HOX genes.

The less dense tissue that separates the sclerotome segments develop into the intervertebral discs.

The notochord disappears in the sclerotome (vertebral body) segments, but persists in the region of the intervertebral discs as the nucleus pulposus. The nucleus pulposus and the fibers of the anulus fibrosus make up the intervertebral disc.

The primary curves (thoracic and sacral curvatures) form during fetal development. The secondary curves develop after birth. The cervical curvature forms as a result of lifting the head and the lumbar curvature forms as a result of walking.

Other Languages
Afrikaans: Werwelkolom
Alemannisch: Wirbelsäule
አማርኛ: ደንደስ
العربية: عمود فقري
Atikamekw: Ototokwakan
Aymar aru: Jikhani k'ili
azərbaycanca: Onurğa sütunu
Bân-lâm-gú: Chek-chui
беларуская: Пазваночнік
беларуская (тарашкевіца)‎: Хрыбетнік
български: Гръбначен стълб
bosanski: Kičma
Чӑвашла: Çурăм шăмми
čeština: Páteř
Cymraeg: Asgwrn cefn
dansk: Rygsøjle
Deutsch: Wirbelsäule
eesti: Selgroog
Esperanto: Vertebraro
euskara: Bizkarrezur
客家語/Hak-kâ-ngî: Poi-nòng-kut
한국어: 척주
հայերեն: Ողնաշար
हिन्दी: मेरूदण्ड
hrvatski: Kralježnica
Ido: Spino
Bahasa Indonesia: Koluma vertebra
interlingua: Columna vertebral
íslenska: Hryggsúla
Kapampangan: Galudgud
ქართული: ხერხემალი
kernowek: Mellkeyn
Kiswahili: Uti wa mgongo
коми: Сюрса лы
лакку: БархӀ
latviešu: Mugurkauls
lietuvių: Stuburas
lingála: Mokesa
magyar: Gerinc
македонски: ‘Рбетен столб
മലയാളം: നട്ടെല്ല്
Mìng-dĕ̤ng-ngṳ̄: Cék-tùi
Nederlands: Wervelkolom
日本語: 脊椎
norsk: Ryggsøyle
norsk nynorsk: Ryggsøyle
oʻzbekcha/ўзбекча: Umurtqa pogʻonasi
ਪੰਜਾਬੀ: ਰੀੜ ਦੀ ਹੱਡੀ
پنجابی: کنگریڑ
polski: Kręgosłup
português: Coluna vertebral
Runa Simi: Wasa tullu
русский: Позвоночник
संस्कृतम्: कशेरुः
Scots: Rig-bane
sicilianu: Cutruzzu
සිංහල: කශේරුව
Simple English: Spine
slovenčina: Chrbtica
slovenščina: Hrbtenica
Soomaaliga: Lafdhabar
کوردی: بڕبڕە
српски / srpski: Кичма
srpskohrvatski / српскохрватски: Kičma
Basa Sunda: Tulang tonggong
svenska: Ryggrad
Tagalog: Gulugod
తెలుగు: వెన్నెముక
тоҷикӣ: Сутунмӯҳра
Türkçe: Omurga
українська: Хребет
ئۇيغۇرچە / Uyghurche: ئومۇرتقا
Tiếng Việt: Cột sống
Võro: Sälgruuts
Winaray: Gutógutó
吴语: 脊椎
ייִדיש: רוקן ביין
粵語: 脊骨
中文: 脊椎