Vertebra Superior View-en.svg
A typical vertebra, superior view
Vertebra Posterolateral-en.svg
A section of the human vertebral column, showing multiple vertebrae in a left posterolateral view.
Anatomical terminology

In the vertebrate spinal column, each vertebra is an irregular bone with a complex structure composed of bone and some hyaline cartilage, the proportions of which vary according to the segment of the backbone and the species of vertebrate.

The basic configuration of a vertebra varies; the large part is the body, and the central part is the centrum. The upper and lower surfaces of the vertebra body give attachment to the intervertebral discs. The posterior part of a vertebra forms a vertebral arch, in eleven parts, consisting of two pedicles, two laminae, and seven processes. The laminae give attachment to the ligamenta flava (ligaments of the spine). There are vertebral notches formed from the shape of the pedicles, which form the intervertebral foramina when the vertebrae articulate. These foramina are the entry and exit conducts for the spinal nerves. The body of the vertebra and the vertebral arch form the vertebral foramen, the larger, central opening that accommodates the spinal canal, which encloses and protects the spinal cord.

Vertebrae articulate with each other to give strength and flexibility to the spinal column, and the shape at their back and front aspects determines the range of movement. Structurally, vertebrae are essentially alike across the vertebrate species, with the greatest difference seen between an aquatic animal and other vertebrate animals. As such, vertebrates take their name from the vertebrae that compose the vertebral column.


Each vertebra is an irregular bone. The size of the vertebrae varies according to placement in the vertebral column, spinal loading, posture and pathology. Along the length of the spine the vertebrae change to accommodate different needs related to stress and mobility.[1]

Side view of vertebrae
Anatomy of a vertebra

Every vertebra has a body, which consists of a large anterior middle portion called the centrum (plural centra) and a posterior vertebral arch,[2] also called a neural arch.[3] The body is composed of cancellous bone, which is the spongy type of osseous tissue, whose micro-anatomy has been specifically studied within the pedicle bones.[4] This cancellous bone is in turn, covered by a thin coating of cortical bone (or compact bone), the hard and dense type of osseous tissue. The vertebral arch and processes have thicker coverings of cortical bone. The upper and lower surfaces of the body of the vertebra are flattened and rough in order to give attachment to the intervertebral discs. These surfaces are the vertebral endplates which are in direct contact with the intervertebral discs and form the joint. The endplates are formed from a thickened layer of the cancellous bone of the vertebral body, the top layer being more dense. The endplates function to contain the adjacent discs, to evenly spread the applied loads, and to provide anchorage for the collagen fibers of the disc. They also act as a semi-permeable interface for the exchange of water and solutes.[5]

The vertebral arch is formed by pedicles and laminae. Two pedicles extend from the sides of the vertebral body to join the body to the arch. The pedicles are short thick processes that extend, one from each side, posteriorly, from the junctions of the posteriolateral surfaces of the centrum, on its upper surface. From each pedicle a broad plate, a lamina, projects backwards and medialwards to join and complete the vertebral arch and form the posterior border of the vertebral foramen, which completes the triangle of the vertebral foramen.[6] The upper surfaces of the laminae are rough to give attachment to the ligamenta flava. These ligaments connect the laminae of adjacent vertebra along the length of the spine from the level of the second cervical vertebra. Above and below the pedicles are shallow depressions called vertebral notches (superior and inferior). When the vertebrae articulate the notches align with those on adjacent vertebrae and these form the openings of the intervertebral foramina. The foramina allow the entry and exit of the spinal nerves from each vertebra, together with associated blood vessels. The articulating vertebrae provide a strong pillar of support for the body.

There are seven processes projecting from the vertebra; a spinous process, two transverse processes, and four articular processes. A major part of a vertebra is a backward extending spinous process (sometimes called the neural spine) which projects centrally. This process points dorsally and caudally from the junction of the laminae. The spinous process serves to attach muscles and ligaments.

The two transverse processes, one on each side of the vertebral body project from either side at the point where the lamina joins the pedicle, between the superior and inferior articular processes. They also serve for the attachment of muscles and ligaments, in particular the intertransverse ligaments. There is a facet on each of the transverse processes of thoracic vertebrae which articulates with the tubercle of the rib.[7] A facet on each side of the thoracic vertebral body articulates with the head of the rib. There are superior and inferior articular facet joints on each side of the vertebra, which serve to restrict the range of movement possible. These facets are joined by a thin portion of the vertebral arch called the pars interarticularis.

The transverse process of a lumbar vertebra is also sometimes called the costal[8][9] or costiform process[10] because it corresponds to a rudimentary rib (costa) which, as opposed to the thorax, is not developed in the lumbar region.[10][11]

Regional variation

Vertebrae take their names from the regions of the vertebral column that they occupy. There are thirty-three vertebrae in the human vertebral column—seven cervical vertebrae, twelve thoracic vertebrae, five lumbar vertebrae, five fused sacral vertebrae forming the sacrum and three to five coccygeal vertebrae, forming the coccyx. The regional vertebrae increase in size as they progress downwards but become smaller in the coccyx.

Cervical vertebrae

A typical cervical vertebra

There are seven cervical vertebrae (but eight cervical spinal nerves), designated C1 through C7. These bones are, in general, small and delicate. Their spinous processes are short (with the exception of C2 and C7, which have palpable spinous processes). C1 is also called the atlas, and C2 is also called the axis. The structure of these vertebrae is the reason why the neck and head have a large range of motion. The atlanto-occipital joint allows the skull to move up and down, while the atlanto-axial joint allows the upper neck to twist left and right. The axis also sits upon the first intervertebral disc of the spinal column.

Cervical vertebrae possess transverse foramina to allow for the vertebral arteries to pass through on their way to the foramen magnum to end in the circle of Willis. These are the smallest, lightest vertebrae and the vertebral foramina are triangular in shape. The spinous processes are short and often bifurcated (the spinous process of C7, however, is not bifurcated, and is substantially longer than that of the other cervical spinous processes).

The atlas differs from the other vertebrae in that it has no body and no spinous process. It has instead a ring-like form, having an anterior and a posterior arch and two lateral masses. At the outside centre points of both arches there is a tubercle, an anterior tubercle and a posterior tubercle, for the attachment of muscles. The front surface of the anterior arch is convex and its anterior tubercle gives attachment to the longus colli muscle. The posterior tubercle is a rudimentary spinous process and gives attachment to the rectus capitis posterior minor muscle. The spinous process is small so as not to interfere with the movement between the atlas and the skull. On the under surface is a facet for articulation with the dens of the axis.

Specific to the cervical vertebra is the transverse foramen (also known as foramen transversarium). This is an opening on each of the transverse processes which gives passage to the vertebral artery and vein and a sympathetic nerve plexus. On the cervical vertebrae other than the atlas, the anterior and posterior tubercles are on either side of the transverse foramen on each transverse process. The anterior tubercle on the sixth cervical vertebra is called the carotid tubercle because it separates the carotid artery from the vertebral artery.

There is a hook-shaped uncinate process on the side edges of the top surface of the bodies of the third to the seventh cervical vertebrae, and also of the first thoracic vertebra. Together with the vertebral disc, this uncinate process prevents a vertebra from sliding backwards off the vertebra below it and limits lateral flexion (side-bending). Luschka's joints involve the vertebral uncinate processes.

The spinous process on C7 is distinctively long and gives the name vertebra prominens to this vertebra. Also a cervical rib can develop from C7 as an anatomical variation.

The term cervicothoracic is often used to refer to the cervical and thoracic vertebrae together, and sometimes also their surrounding areas.

Thoracic vertebrae

A typical thoracic vertebra

The twelve thoracic vertebrae and their transverse processes have surfaces that articulate with the ribs. Some rotation can occur between the thoracic vertebrae, but their connection with the rib cage prevents much flexion or other movement. They may also be known as 'dorsal vertebrae', in the human context.

The vertebral bodies are roughly heart-shaped and are about as wide anterio-posterioly as they are in the transverse dimension. Vertebral foramina are roughly circular in shape.

The top surface of the first thoracic vertebra has a hook-shaped uncinate process, just like the cervical vertebrae.

The term thoracolumbar is sometimes used to refer to the thoracic and lumbar vertebrae together, and sometimes also their surrounding areas.

The thoracic vertebrae attach to ribs and so have articular facets specific to them; these are the superior, transverse and inferior costal facets. As the vertebrae progress down the spine they increase in size to match up with the adjoining lumbar section.

Lumbar vertebrae

Lumbar vertebra showing mammillary processes
A typical lumbar vertebra

The five lumbar vertebrae are the largest of the vertebrae, their robust construction being necessary for supporting greater weight than the other vertebrae. They allow significant flexion, extension and moderate lateral flexion (side-bending). The discs between these vertebrae create a natural lumbar lordosis (a spinal curvature that is concave posteriorly).[citation needed]This is due to the difference in thickness between the front and back parts of the intervertebral discs.

The lumbar vertebrae are located between the ribcage and the pelvis and are the largest of the vertebrae. The pedicles are strong as are the laminae and the spinous process is thick and broad. The vertebral foramen is large and triangular. The transverse processes are long and narrow and three tubercles can be seen on them. These are a lateral cosiform process, a mammillary process and an accessory process.[12] The superior, or upper tubercle is the mammillary process which connects with the superior articular process. The multifidus muscle attaches to the mammillary process and this muscle extends through the length of the vertebral column, giving support. The inferior, or lower tubercle is the accessory process and this is found at the back part of the base of the transverse process. The term lumbosacral is often used to refer to the lumbar and sacral vertebrae together, and sometimes includes their surrounding areas.



There are five sacral vertebrae (S1–S5) which are fused in maturity, into one large bone, the sacrum, with no intervertebral discs.[13] The sacrum with the ilium forms a sacroiliac joint on each side of the pelvis, which articulates with the hips.


The last three to five coccygeal vertebrae (but usually four) (Co1–Co5) make up the tailbone or coccyx. There are no intervertebral discs.


Development of vertebrae

Somites form in the early embryo and some of these develop into sclerotomes. The sclerotomes form the vertebrae as well as the rib cartilage and part of the occipital bone. From their initial location within the somite, the sclerotome cells migrate medially towards the notochord. These cells meet the sclerotome cells from the other side of the paraxial mesoderm. The lower half of one sclerotome fuses with the upper half of the adjacent one to form each vertebral body.[14] From this vertebral body, sclerotome cells move dorsally and surround the developing spinal cord, forming the vertebral arch. Other cells move distally to the costal processes of thoracic vertebrae to form the ribs.[14]

Other Languages
Afrikaans: Werwel
العربية: فقرة (تشريح)
ܐܪܡܝܐ: ܦܩܪܐ
বাংলা: কশেরুকা
Bân-lâm-gú: Chek-chui-kut
башҡортса: Умыртҡа
беларуская: Пазванок
български: Прешлен
català: Vèrtebra
čeština: Obratel
Cymraeg: Fertibra
dansk: Ryghvirvel
eesti: Lüli
español: Vértebra
Esperanto: Vertebro
euskara: Orno
فارسی: مهره (بدن)
français: Vertèbre
Gaeilge: Veirteabra
Gaelg: Vertebra
galego: Vértebra
한국어: 척추뼈패임
Bahasa Indonesia: Tulang punggung
italiano: Vertebra
kurdî: Movik
Кыргызча: Омуртка
Latina: Vertebra
latviešu: Skriemeļi
Limburgs: Wurvel
magyar: Csigolya
македонски: Прешлен
മലയാളം: കശേരു
मराठी: मणके
Bahasa Melayu: Tulang belakang
Nederlands: Wervel (anatomie)
日本語: 椎骨
Nordfriisk: Rechknaaken
polski: Kręg
português: Vértebra
română: Vertebră
Simple English: Vertebra
slovenčina: Stavec
slovenščina: Vretence
Soomaaliga: Ricir
srpskohrvatski / српскохрватски: Kičmeni pršljen
Basa Sunda: Vertebra
suomi: Nikama
svenska: Ryggkota
తెలుగు: వెన్నుపూస
Türkçe: Omur
українська: Хребці
walon: Cronzoxh