Track gauge

In rail transport, track gauge or track gage is the spacing of the rails on a railway track and is measured between the inner faces of the load-bearing rails.

All vehicles on a rail network must have running gear that is compatible with the track gauge, and in the earliest days of railways the selection of a proposed railway's gauge was a key issue. As the dominant parameter determining interoperability, it is still frequently used as a descriptor of a route or network.

In some places there is a distinction between the nominal gauge and the actual gauge, due to divergence of track components from the nominal. Railway engineers use a device, like a caliper, to measure the actual gauge, and this device is also referred to as a track gauge.

The terms structure gauge and loading gauge, both widely used, have little connection with track gauge. Both refer to two-dimensional cross-section profiles, surrounding the track and vehicles running on it. The structure gauge specifies the outline into which new or altered structures (bridges, lineside equipment etc.) must not encroach. The loading gauge is the corresponding envelope within which rail vehicles and their loads must be contained. If an exceptional load or a new type of vehicle is being assessed to run, it is required to conform to the route's loading gauge. Conformance ensures that traffic will not collide with lineside structures.

Selection of gauge

Early track gauges

The earliest form of railway was a wooden wagonway, along which single wagons were manhandled, almost always in or from a mine or quarry. Initially the wagons were guided by human muscle power; subsequently by various mechanical methods. Timber rails wore rapidly: later, flat cast-iron plates were provided to limit the wear. In some localities, the plates were made L-shaped, with the vertical part of the L guiding the wheels; this is generally referred to as a "plateway". Flanged wheels eventually became universal, and the spacing between the rails had to be compatible with that of the wagon wheels.[1]

As the guidance of the wagons was improved, short strings of wagons could be connected and pulled by teams of horses, and the track could be extended from the immediate vicinity of the mine or quarry, typically to a navigable waterway. The wagons were built to a consistent pattern and the track would be made to suit the needs of the horses and wagons: the gauge was more critical. The Penydarren Tramroad of 1802 in South Wales, a plateway, spaced these at 4 ft 4 in (1,321 mm) over the outside of the upstands.[2]

Fish-belly cast-iron rails from the Cromford and High Peak Railway

The Penydarren Tramroad probably carried the first journey by a locomotive, in 1804, and it was successful for the locomotive, but unsuccessful for the track: the plates were not strong enough to carry its weight. A considerable progressive step was made when cast iron edge rails were first employed; these had the major axis of the rail section configured vertically, giving a much stronger section to resist bending forces, and this was further improved when fish-belly rails were introduced.[3]

Edge rails required a close match between rail spacing and the configuration of the wheelsets, and the importance of the gauge was reinforced. Railways were still seen as local concerns: there was no appreciation of a future connection to other lines, and selection of the track gauge was still a pragmatic decision based on local requirements and prejudices, and probably determined by existing local designs of (road) vehicles.

Thus, the Monkland and Kirkintilloch Railway (1826) in the West of Scotland used 4 ft 6 in (1,372 mm);[4] the Dundee and Newtyle Railway (1831) in the north-east of Scotland adopted 4 ft 6 12 in (1,384 mm);[5] the Redruth and Chasewater Railway (1825) in Cornwall chose 4 ft (1,219 mm).[6]

The Arbroath and Forfar Railway opened in 1838 with a gauge of 5 ft 6 in (1,676 mm),[7] and the Ulster Railway of 1839 used 6 ft 2 in (1,880 mm)[7]

Standard gauge appears

An early Stephenson locomotive

Locomotives were being developed in the first decades of the 19th century; they took various forms, but George Stephenson developed a successful locomotive on the Killingworth Wagonway, where he worked. His designs were so successful that they became the standard, and when the Stockton and Darlington Railway was opened in 1825, it used his locomotives, with the same gauge as the Killingworth line, 4 ft 8 in (1,422 mm).[8][9]

The Stockton and Darlington line was immensely successful, and when the Liverpool and Manchester Railway, the first intercity line, was built (it opened in 1830), it used the same gauge. It was also hugely successful, and the gauge (now eased to 4 ft 8 12 in or 1,435 mm[8]), became the automatic choice: "standard gauge".

Gauge differences

The Liverpool and Manchester was quickly followed by other trunk railways, with the Grand Junction Railway and the London and Birmingham Railway forming a huge critical mass of standard gauge. When Bristol promoters planned a line from London, they employed the innovative engineer Isambard Kingdom Brunel. He decided on a wider gauge, to give greater stability, and the Great Western Railway adopted a gauge of 7 ft (2,134 mm), later eased to 14 in (2,140 mm). This became known as broad gauge. The Great Western Railway (GWR) was successful and was greatly expanded, directly and through friendly associated companies, widening the scope of broad gauge.

At the same time, other parts of Britain built railways to standard gauge, and British technology was exported to European countries and parts of North America, also using standard gauge. Britain polarised into two areas: those that used broad gauge and those that used standard gauge. In this context, standard gauge was referred to as "narrow gauge" to indicate the contrast. Some smaller concerns selected other non-standard gauges: the Eastern Counties Railway adopted 5 ft (1,524 mm). Most of them converted to standard gauge at an early date, but the GWR's broad gauge continued to grow.

The larger railway companies wished to expand geographically, and large areas were considered to be under their control. When a new independent line was proposed to open up an unconnected area, the gauge was crucial in determining the allegiance that the line would adopt: if it was broad gauge, it must be friendly to the Great Western railway; if narrow (standard) gauge, it must favour the other companies. The battle to persuade or coerce that choice became very intense, and became referred to as "the gauge wars".

As passenger and freight transport between the two areas became increasingly important, the difficulty of moving from one gauge to the other—the break of gauge—became more prominent and more objectionable. In 1845 a Royal Commission on Railway Gauges was created to look into the growing problem, and this led to the Regulating the Gauge of Railways Act 1846,[10] which forbade the construction of broad gauge lines unconnected with the broad gauge network. The broad gauge network was eventually converted—a progressive process completed in 1892, called gauge conversion. The same Act mandated the gauge of 5 ft 3 in (1,600 mm) for use in Ireland.

Gauge selection in other countries

Different gauges, from left: 1,435 mm (4 ft 8 12 in), 1,000 mm (3 ft 3 38 in), and 600 mm (1 ft 11 58 in), on display at the China Railway Museum in Beijing

As railways were built in other countries, the gauge selection was pragmatic: the track would have to fit the rolling stock. If locomotives were imported from elsewhere, especially in the early days, the track would be built to fit them. In some cases standard gauge was adopted, but many countries or companies chose a different gauge as their national gauge, either by governmental policy, or as a matter of individual choice. [11]

Narrow gauges were widely used in mountainous regions, as construction costs tended to be lower and they enabled the tighter turns that were often required.[clarification needed]

Couplers

To keep the rail traffic compatible within a network, not only the track gauge needs to be the same, but also the couplers, at least for locomotive-hauled vehicles. For this reason, most of the standard gauge railways in Europe use the standard buffers and chain coupler with some use of the buckeye coupler in the UK, for locomotive hauled vehicles, and some use Scharfenberg couplers on suburban multiple unit as well as variants of the SA3 couplers on some rolling stock, while narrow gauge railways use a variation of couplers, since they often are isolated from each other, so standardisation is not needed. Similarly, standard gauge railways in Canada, the US and Mexico use the janney coupler or the compatible tightlock coupling for locomotive-hauled equipment.

Other Languages
العربية: اتساع السكة
Bân-lâm-gú: Kúi-kī
беларуская: Шырыня каляіны
беларуская (тарашкевіца)‎: Шырыня каляіны
български: Междурелсие
català: Ample de via
čeština: Rozchod koleje
dansk: Sporvidde
español: Ancho de vía
Esperanto: Ŝpuro
estremeñu: Anchón de via
føroyskt: Sporbreidd
한국어: 궤간
हिन्दी: रेल गेज
hrvatski: Kolosijek
Bahasa Indonesia: Lebar jalur kereta api
Kiswahili: Geji
latviešu: Sliežu platums
lumbaart: Scartament
македонски: Ширина на колосек
Nederlands: Spoorwijdte
日本語: 軌間
norsk: Sporvidde
norsk nynorsk: Sporvidd
polski: Rozstaw szyn
português: Bitola
русиньскый: Росход штрекы
русский: Ширина колеи
Simple English: Rail gauge
slovenčina: Rozchod koľaje
svenska: Spårvidd
українська: Ширина колії
اردو: ٹریک گیج
粵語: 軌距
中文: 轨距