Therapeutic index

The therapeutic index (TI; also referred to as therapeutic ratio) is a comparison of the amount of a therapeutic agent that causes the therapeutic effect to the amount that causes toxicity.[1] The related terms therapeutic window or safety window refer to a range of doses which optimize between efficacy and toxicity, achieving the greatest therapeutic benefit without resulting in unacceptable side-effects or toxicity.

Classically, in an established clinical indication setting of an approved drug, TI refers to the ratio of the dose of drug that causes adverse effects at an incidence/severity not compatible with the targeted indication (e.g. toxic dose in 50% of subjects, TD50) to the dose that leads to the desired pharmacological effect (e.g. efficacious dose in 50% of subjects, ED50). In contrast, in a drug development setting TI is calculated based on plasma exposure levels.[2]

In the early days of pharmaceutical toxicology, TI was frequently determined in animals as lethal dose of a drug for 50% of the population (LD50) divided by the minimum effective dose for 50% of the population (ED50). Today, more sophisticated toxicity endpoints are used.

For many drugs, there are severe toxicities that occur at sublethal doses in humans, and these toxicities often limit the maximum dose of a drug. A higher therapeutic index is preferable to a lower one: a patient would have to take a much higher dose of such a drug to reach the toxic threshold than the dose taken to elicit the therapeutic effect.

Generally, a drug or other therapeutic agent with a narrow therapeutic range (i.e. having little difference between toxic and therapeutic doses) may have its dosage adjusted according to measurements of the actual blood levels achieved in the person taking it. This may be achieved through therapeutic drug monitoring (TDM) protocols. TDM is recommended for use in the treatment of psychiatric disorders with lithium due to its narrow therapeutic range.[3]

'ED'Effective Dose
'TD'Toxic Dose
'LD'Lethal Dose
'TI'Therapeutic Index
'TR'Therapeutic Ratio

Therapeutic Index in drug development

A high Therapeutic Index (TI) is preferable for a drug to have a favorable safety profile. At early discovery / development stage, the clinical TI of a drug candidate is not known. However, understanding the preliminary TI of a drug candidate is of utmost importance as early as possible since TI is an important indicator of the probability of the successful development of a drug. Recognizing drug candidates with potentially suboptimal TI at earliest possible stage helps to initiate mitigation or potentially re-deploy resources.

In a drug development setting, TI is the quantitative relationship between efficacy (pharmacology) and safety (toxicology), without considering the nature of pharmacological or toxicological endpoints themselves. However, to convert a calculated TI to something that is more than just a number, the nature and limitations of pharmacological and/or toxicological endpoints must be considered. Depending on the intended clinical indication, the associated unmet medical need and/or the competitive situation, more or less weight can be given to either the safety or efficacy of a drug candidate with the aim to create a well balanced indication-specific safety vs efficacy profile.

In general, it is the exposure of a given tissue to drug (i.e. drug concentration over time), rather than dose, that drives the pharmacological and toxicological effects. For example, at the same dose there may be marked inter-individual variability in exposure due to polymorphisms in metabolism, DDIs or differences in body weight or environmental factors. These considerations emphasize the importance of using exposure rather than dose for calculating TI. To account for delays between exposure and toxicity, the TI for toxicities that occur after multiple dose administrations should be calculated using the exposure to drug at steady state rather than after administration of a single dose.

A review published by Muller and Milton in Nature Reviews Drug Discovery critically discusses the various aspects of TI determination and interpretation in a translational drug development setting for both small molecules and biotherapeutics.[2]

Other Languages