Tangent bundle

Informally, the tangent bundle of a manifold (in this case a circle) is obtained by considering all the tangent spaces (top), and joining them together in a smooth and non-overlapping manner (bottom).[note 1]

In differential geometry, the tangent bundle of a differentiable manifold is a manifold which assembles all the tangent vectors in M. As a set, it is given by the disjoint union[note 1] of the tangent spaces of M. That is,

where denotes the tangent space to at the point . So, an element of can be thought of as a pair , where is a point in and is a tangent vector to at . There is a natural projection

defined by . This projection maps each tangent space to the single point .

The tangent bundle comes equipped with a natural topology (described in a section below). With this topology, the tangent bundle to a manifold is the prototypical example of a vector bundle (a fiber bundle whose fibers are vector spaces). A section of is a vector field on , and the dual bundle to is the cotangent bundle, which is the disjoint union of the cotangent spaces of . By definition, a manifold is parallelizable if and only if the tangent bundle is trivial.By definition, a manifold M is framed if and only if the tangent bundle TM is stably trivial, meaning that for some trivial bundle E the Whitney sum TME is trivial. For example, the n-dimensional sphere Sn is framed for all n, but parallelizable only for n=1,3,7 (by results of Bott-Milnor and Kervaire).

Role

One of the main roles of the tangent bundle is to provide a domain and range for the derivative of a smooth function. Namely, if f : MN is a smooth function, with M and N smooth manifolds, its derivative is a smooth function Df : TMTN.

Other Languages
français: Fibré tangent
한국어: 접다발
Հայերեն: Շոշափողակոյտ
Nederlands: Raakbundel
日本語: 接束
português: Fibrado tangente
svenska: Tangentknippe
Türkçe: Tanjant demet
中文: 切丛