## Strongly connected component |

In the mathematical theory of **strongly connected** or **diconnected** if every vertex is **strongly connected components** or **diconnected components** of an arbitrary directed graph form a

A **strongly connected** if there is a *G* that may not itself be strongly connected, a pair of vertices *u* and *v* are said to be strongly connected to each other if there is a path in each direction between them.

The **strongly connected components**. Equivalently, a **strongly connected component** of a directed graph *G* is a subgraph that is strongly connected, and is *G* can be included in the subgraph without breaking its property of being strongly connected. The collection of strongly connected components forms a *G*.

If each strongly connected component is **condensation** of *G*. A directed graph is acyclic if and only if it has no strongly connected subgraphs with more than one vertex, because a directed cycle is strongly connected and every nontrivial strongly connected component contains at least one directed cycle.

Other Languages

العربية: مخطط قوي التوصيل

català: Component fortament connex

čeština: Silně souvislá komponenta

español: Componente fuertemente conexo

فارسی: اجزای قویا همبند

français: Composante fortement connexe

Հայերեն: Ամուր կապակցված բաղադրիչներ

italiano: Componente fortemente connessa

magyar: Erősen összefüggő komponens

polski: Składowa silnie spójna

српски / srpski: Чврста компонента повезаности

українська: Компонента сильної зв'язності графа

Tiếng Việt: Thành phần liên thông mạnh

中文: 强连通分量