Shoaling and schooling

Shoaling and schooling
These surgeonfish are shoaling. They are swimming somewhat independently, but in such a way that they stay connected, forming a social group.
These bluestripe snapper are schooling. They are all swimming in the same direction in a coordinated way.

In biology, any group of fish that stay together for social reasons are shoaling (pronounced /ˈʃoʊlɪŋ/), and if the group is swimming in the same direction in a coordinated manner, they are schooling (pronounced /ˈskuːlɪŋ/). [1] In common usage, the terms are sometimes used rather loosely. [1] About one quarter of fish species shoal all their lives, and about one half shoal for part of their lives. [2]

Fish derive many benefits from shoaling behaviour including defence against predators (through better predator detection and by diluting the chance of individual capture), enhanced foraging success, and higher success in finding a mate. It is also likely that fish benefit from shoal membership through increased hydrodynamic efficiency.

Fish use many traits to choose shoalmates. Generally they prefer larger shoals, shoalmates of their own species, shoalmates similar in size and appearance to themselves, healthy fish, and kin (when recognized).

The "oddity effect" posits that any shoal member that stands out in appearance will be preferentially targeted by predators. This may explain why fish prefer to shoal with individuals that resemble themselves. The oddity effect thus tends to homogenize shoals.

Overview

Underwater video loop of a school of herrings migrating at high speed to their spawning grounds in the Baltic Sea

An aggregation of fish is the general term for any collection of fish that have gathered together in some locality. Fish aggregations can be structured or unstructured. An unstructured aggregation might be a group of mixed species and sizes that have gathered randomly near some local resource, such as food or nesting sites.

If, in addition, the aggregation comes together in an interactive, social way, they may be said to be shoaling. [1] [a] Although shoaling fish can relate to each other in a loose way, with each fish swimming and foraging somewhat independently, they are nonetheless aware of the other members of the group as shown by the way they adjust behaviour such as swimming, so as to remain close to the other fish in the group. Shoaling groups can include fish of disparate sizes and can including mixed-species subgroups.

If the shoal becomes more tightly organised, with the fish synchronising their swimming so they all move at the same speed and in the same direction, then the fish may be said to be schooling. [1] [3] [b] Schooling fish are usually of the same species and the same age/size. Fish schools move with the individual members precisely spaced from each other. The schools undertake complicated manoeuvres, as though the schools have minds of their own. [4]

The intricacies of schooling are far from fully understood, especially the swimming and feeding energetics. Many hypotheses to explain the function of schooling have been suggested, such as better orientation, synchronized hunting, predator confusion and reduced risk of being found. Schooling also has disadvantages, such as excretion buildup in the breathing media and oxygen and food depletion. The way the fish array in the school probably gives energy saving advantages, though this is controversial. [5]

Schools of forage fish often accompany large predator fish. Here a school of jacks accompany a great barracuda.

Fish can be obligate or facultative shoalers. [6] Obligate shoalers, such as tunas, herrings and anchovy, spend all of their time shoaling or schooling, and become agitated if separated from the group. Facultative shoalers, such as Atlantic cod, saiths and some carangids, shoal only some of the time, perhaps for reproductive purposes. [7]

Shoaling fish can shift into a disciplined and coordinated school, then shift back to an amorphous shoal within seconds. Such shifts are triggered by changes of activity from feeding, resting, travelling or avoiding predators. [4]

When schooling fish stop to feed, they break ranks and become shoals. Shoals are more vulnerable to predator attack. The shape a shoal or school takes depends on the type of fish and what the fish are doing. Schools that are travelling can form long thin lines, or squares or ovals or amoeboid shapes. Fast moving schools usually form a wedge shape, while shoals that are feeding tend to become circular. [4]

Forage fish are small fish which are preyed on by larger predators for food. Predators include other larger fish, seabirds and marine mammals. Typical ocean forage fish are small, filter-feeding fish such as herring, anchovies and menhaden. Forage fish compensate for their small size by forming schools. Some swim in synchronised grids with their mouths open so they can efficiently filter feed on plankton. [8] These schools can become huge, moving along coastlines and migrating across open oceans. The shoals are concentrated food resources for the great marine predators.

These sometimes immense gatherings fuel the ocean food web. Most forage fish are pelagic fish, which means they form their schools in open water, and not on or near the bottom ( demersal fish). Forage fish are short-lived, and go mostly unnoticed by humans. The predators are keenly focused on the shoals, acutely aware of their numbers and whereabouts, and make migrations themselves, often in schools of their own, that can span thousands of miles to connect with, or stay connected with them. [9]

A school of fish has many eyes that can scan for food or threats

Herring are among the more spectacular schooling fish. They aggregate together in huge numbers. The largest schools are often formed during migrations by merging with smaller schools. "Chains" of schools one hundred kilometres long have been observed of mullet migrating in the Caspian Sea. Radakov estimated herring schools in the North Atlantic can occupy up to 4.8 cubic kilometres with fish densities between 0.5 and 1.0 fish/cubic metre, totalling about three billion fish in a single school. [10] These schools move along coastlines and traverse the open oceans. Herring schools in general have very precise arrangements which allow the school to maintain relatively constant cruising speeds. Herrings have excellent hearing, and their schools react very rapidly to a predator. The herrings keep a certain distance from a moving scuba diver or a cruising predator like a killer whale, forming a vacuole which looks like a doughnut from a spotter plane. [11]

Many species of large predatory fish also school, including many highly migratory fish, such as tuna and some oceangoing sharks. Cetaceans such as dolphins, porpoises and whales, operate in organised social groups called pods.

"Shoaling behaviour is generally described as a trade-off between the anti-predator benefits of living in groups and the costs of increased foraging competition." [12] Landa (1998) argues that the cumulative advantages of shoaling, as elaborated below, are strong selective inducements for fish to join shoals. [13] Parrish et al. (2002) argue similarly that schooling is a classic example of emergence, where there are properties that are possessed by the school but not by the individual fish. Emergent properties give an evolutionary advantage to members of the school which non members do not receive. [14]

Other Languages
български: Рибен пасаж
Deutsch: Schwarmfisch
eesti: Kalaparv
español: Cardumen
Esperanto: Fiŝaro
euskara: Sarda
français: Banc (poisson)
galego: Cardume
íslenska: Fiskitorfa
italiano: Banco (pesci)
kaszëbsczi: Wała rib
Nederlands: School (vissen)
norsk: Stim
norsk nynorsk: Stimfisk
polski: Ławica ryb
português: Cardume
Simple English: Shoaling and schooling
svenska: Fiskstim