A variety of radio antennas on Sandia peak near Albuquerque, New Mexico, US. Transmitting antennas are often located on mountain peaks, to give maximum transmission range.

Radio is the technology of signaling or communicating using radio waves.[1][2][3] Radio waves are electromagnetic waves of frequency between 30 hertz (Hz) and 300 gigahertz (GHz). They are generated by an electronic device called a transmitter connected to an antenna which radiates the waves, and received by a radio receiver connected to another antenna. Radio is very widely used in modern technology, in radio communication, radar, radio navigation, remote control, remote sensing and other applications. In radio communication, used in radio and television broadcasting, cell phones, two-way radios, wireless networking and satellite communication among numerous other uses, radio waves are used to carry information across space from a transmitter to a receiver, by modulating the radio signal (impressing an information signal on the radio wave by varying some aspect of the wave) in the transmitter. In radar, used to locate and track objects like aircraft, ships, spacecraft and missiles, a beam of radio waves emitted by a radar transmitter reflects off the target object, and the reflected waves reveal the object's location. In radio navigation systems such as GPS and VOR, a mobile receiver receives radio signals from navigational radio beacons whose position is known, and by precisely measuring the arrival time of the radio waves the receiver can calculate its position on Earth. In wireless remote control devices like drones, garage door openers, and keyless entry systems, radio signals transmitted from a controller device control the actions of a remote device.

Applications of radio waves which do not involve transmitting the waves significant distances, such as RF heating used in industrial processes and microwave ovens, and medical uses such as diathermy and MRI machines, are not usually called radio. The noun radio is also used to mean a broadcast radio receiver.

Radio waves were first identified and studied by German physicist Heinrich Hertz in 1886. The first practical radio transmitters and receivers were developed around 1895-6 by Italian Guglielmo Marconi, and radio began to be used commercially around 1900. To prevent interference between users, the emission of radio waves is strictly regulated by law, coordinated by an international body called the International Telecommunications Union (ITU), which allocates frequency bands in the radio spectrum for different uses.

Radio technology

Radio waves are radiated by electric charges undergoing acceleration.[4] They are generated artificially by time varying electric currents, consisting of electrons flowing back and forth in a metal conductor called an antenna.[5] In transmission, a transmitter generates an alternating current of radio frequency which is applied to an antenna. The antenna radiates the power in the current as radio waves. When the waves strike the antenna of a radio receiver, they push the electrons in the metal back and forth, inducing a tiny alternating current. The radio receiver connected to the receiving antenna detects this oscillating current and amplifies it.

As they travel farther from the transmitting antenna, radio waves spread out so their signal strength (intensity in watts per square meter) decreases, so radio transmissions can only be received within a limited range of the transmitter, the distance depending on the transmitter power, antenna radiation pattern, receiver sensitivity, noise level, and presence of obstructions between transmitter and receiver. An omnidirectional antenna transmits or receives radio waves in all directions, while a directional antenna or high gain antenna transmits radio waves in a beam in a particular direction, or receives waves from only one direction.

Radio waves travel through a vacuum at the speed of light, and in air at very close to the speed of light, so the wavelength of a radio wave, the distance in meters between adjacent crests of the wave, is inversely proportional to its frequency.

Radio communication

Radio communication. Information such as sound is converted by a transducer such as a microphone to an electrical signal, which modulates a radio wave produced by the transmitter. A receiver intercepts the radio wave and extracts the information-bearing modulation signal, which is converted back to a human usable form with another transducer such as a loudspeaker.
Comparison of AM and FM modulated radio waves

In radio communication systems, information is carried across space using radio waves. At the sending end, the information to be sent is converted by some type of transducer to a time-varying electrical signal called the modulation signal.[6] The modulation signal may be an audio signal representing sound from a microphone, a video signal representing moving images from a video camera, or a digital signal consisting of a sequence of bits representing binary data from a computer. The modulation signal is applied to a radio transmitter. In the transmitter, an electronic oscillator generates an alternating current oscillating at a radio frequency, called the carrier wave because it serves to "carry" the information through the air. The information signal is used to modulate the carrier, varying some aspect of the carrier wave, impressing the information on the carrier. Different radio systems use different modulation methods:

Many other types of modulation are also used. The modulated carrier is amplified in the transmitter, and applied to a transmitting antenna which radiates the energy as radio waves. The radio waves carry the information to the receiver location.

At the receiver, the radio wave induces a tiny oscillating voltage in the receiving antenna which is a weaker replica of the current in the transmitting antenna.[6] This voltage is applied to the radio receiver, which amplifies the weak radio signal so it is stronger, then demodulates it, extracting the original modulation signal from the modulated carrier wave. The modulation signal is converted by a transducer back to a human-usable form: an audio signal is converted to sound waves by a loudspeaker or earphones, a video signal is converted to images by a display, while a digital signal is applied to a computer or microprocessor, which interacts with human users.

The radio waves from many transmitters pass through the air simultaneously without interfering with each other because each transmitter's radio waves oscillate at a different rate, in other words each transmitter has a different frequency, measured in kilohertz (kHz), megahertz (MHz) or gigahertz (GHz). The receiving antenna typically picks up the radio signals of many transmitters. The receiver uses tuned circuits to select the radio signal desired out of all the signals picked up by the antenna, and reject the others. A tuned circuit (also called resonant circuit or tank circuit) acts like a resonator, similarly to a tuning fork.[6] It has a natural resonant frequency at which it oscillates. The resonant frequency of the receiver's tuned circuit is adjusted by the user to the frequency of the desired radio station; this is called "tuning". The oscillating radio signal from the desired station causes the tuned circuit to resonate, oscillate in sympathy, and it passes the signal on to the rest of the receiver. Radio signals at other frequencies are blocked by the tuned circuit and not passed on.


Frequency spectrum of a typical modulated AM or FM radio signal. It consists of a component C at the carrier wave frequency with the information (modulation) contained in two narrow bands of frequencies called sidebands (SB) just above and below the carrier frequency.

A modulated radio wave, carrying an information signal, occupies a range of frequencies. See diagram. The information (modulation) in a radio signal is usually concentrated in narrow frequency bands called sidebands (SB) just above and below the carrier frequency. The width in hertz of the frequency range that the radio signal occupies, the highest frequency minus the lowest frequency, is called its bandwidth (BW). A given amount of bandwidth can carry the same amount of information (data rate in bits per second) regardless of where in the radio frequency spectrum it is located, so bandwidth is a measure of information-carrying capacity. The bandwidth required by a radio transmission depends on the data rate of the information (modulation signal) being sent, and the spectral efficiency of the modulation method used; how much data it can transmit in each kilohertz of bandwidth. Different types of information signals carried by radio have different data rates. For example, a television (video) signal has a greater data rate than an audio signal.

The radio spectrum, the total range of radio frequencies that can be used for communication in a given area, is a fixed resource.[3] Each radio transmission occupies a portion of the total bandwidth available. Radio bandwidth is regarded as an economic good which has a monetary cost and is in increasing demand. In some parts of the radio spectrum the right to use a frequency band or even a single radio channel is bought and sold for millions of dollars. So there is an incentive to employ technology to minimize the bandwidth used by radio services.

In recent years there has been a transition from analog to digital radio transmission technologies. Part of the reason for this is that digital modulation can often transmit more information (a greater data rate) in a given bandwidth than analog modulation, by using data compression algorithms, which reduce redundancy in the data to be sent, and more efficient modulation. Other reasons for the transition is that digital modulation has greater noise immunity than analog, digital signal processing chips have more power and flexibility than analog circuits, and a wide variety of types of information can be transmitted using the same digital modulation.

Because it is a fixed resource which is in demand by an increasing number of users, the radio spectrum has become increasingly congested in recent decades, and the need to use it more effectively is driving many additional radio innovations such as trunked radio systems, spread spectrum (ultra-wideband) transmission, frequency reuse, dynamic spectrum management, frequency pooling, and cognitive radio.

ITU frequency bands

The ITU arbitrarily divides the radio spectrum into 12 bands, each beginning at a wavelength which is a power of ten (10n) metres, with corresponding frequency of 3 times a power of ten, and each covering a decade of frequency or wavelength.[3] Each of these bands has a traditional name:

Band name Abbreviation Frequency Wavelength Band name Abbreviation Frequency Wavelength
Extremely low frequency ELF 3 – 30 Hz 100,000–10,000 km High frequency HF 3 – 30 MHz 100–10 m
Super low frequency SLF 30 – 300 Hz 10,000–1,000 km Very high frequency VHF 30 – 300 MHz 10–1 m
Ultra low frequency ULF 300 – 3000 Hz 1,000–100 km Ultra high frequency UHF 300 – 3000 MHz 100–10 cm
Very low frequency VLF 3 – 30 kHz 100–10 km Super high frequency SHF 3 – 30 GHz 10–1 cm
Low frequency LF 30 – 300 kHz 10–1 km Extremely high frequency EHF 30 – 300 GHz 10–1 mm
Medium frequency MF 300 – 3000 kHz 1000-100 m Tremendously high frequency THF 300 – 3000 GHz 1–0.1 mm
Other Languages
Afrikaans: Radio
العربية: أنظمة راديو
Deutsch: Radio
فارسی: رادیو
贛語: 無線電
Кыргызча: Радио байланыш
Bahasa Melayu: Radio
မြန်မာဘာသာ: ရေဒီယို
Patois: Riedio
polski: Radio
русский: Радиосвязь
ၽႃႇသႃႇတႆး : ဢွမ်လူမ်း
Tagalog: Radyo
தமிழ்: வானொலி
українська: Радіозв'язок
اردو: ریڈیو
Tiếng Việt: Radio
吴语: 無線電
粵語: 無線電
中文: 无线电