The Mathematics Portal


Mathematics is the study of numbers, quantity, space, pattern, structure, and change. Mathematics is used throughout the world as an essential tool in many fields, including natural science, engineering, medicine, and the social sciences. Applied mathematics, the branch of mathematics concerned with application of mathematical knowledge to other fields, inspires and makes use of new mathematical discoveries and sometimes leads to the development of entirely new mathematical disciplines, such as statistics and game theory. Mathematicians also engage in pure mathematics, or mathematics for its own sake, without having any application in mind. There is no clear line separating pure and applied mathematics, and practical applications for what began as pure mathematics are often discovered.

Selected article

A Hilbert space is a real or complex vector space with a positive-definite Hermitian form, that is complete under its norm. Thus it is an inner product space, which means that it has notions of distance and of angle (especially the notion of orthogonality or perpendicularity). The completeness requirement ensures that for infinite dimensional Hilbert spaces the limits exist when expected, which facilitates various definitions from calculus. A typical example of a Hilbert space is the space of square summable sequences.

Hilbert spaces allow simple geometric concepts, like projection and change of basis to be applied to infinite dimensional spaces, such as function spaces. They provide a context with which to formalize and generalize the concepts of the Fourier series in terms of arbitrary orthogonal polynomials and of the Fourier transform, which are central concepts from functional analysis. Hilbert spaces are of crucial importance in the mathematical formulation of quantum mechanics.

View all selected articlesRead More...

Selected image

low-resolution ASCII-art depiction of the Mandelbrot set
Credit: Elphaba

This is a modern reproduction of the first published image of the Mandelbrot set, which appeared in 1978 in a technical paper on Kleinian groups by Robert W. Brooks and Peter Matelski. The Mandelbrot set consists of the points c in the complex plane that generate a bounded sequence of values when the recursive relation zn+1 = zn2 + c is repeatedly applied starting with z0 = 0. The boundary of the set is a highly complicated fractal, revealing ever finer detail at increasing magnifications. The boundary also incorporates smaller near-copies of the overall shape, a phenomenon known as quasi-self-similarity. The ASCII-art depiction seen in this image only hints at the complexity of the boundary of the set. Advances in computing power and computer graphics in the 1980s resulted in the publication of high-resolution color images of the set (in which the colors of points outside the set reflect how quickly the corresponding sequences of complex numbers diverge), and made the Mandelbrot set widely known by the general public. Named by mathematicians Adrien Douady and John H. Hubbard in honor of Benoit Mandelbrot, one of the first mathematicians to study the set in detail, the Mandelbrot set is closely related to the Julia set, which was studied by Gaston Julia beginning in the 1910s.

Did you know…

Did you know...

             

Showing 7 items out of 74

WikiProjects

Things you can do

Categories


Topics in mathematics

GeneralFoundationsNumber theoryDiscrete mathematics
Nuvola apps bookcase.svg
Set theory icon.svg
Nuvola apps kwin4.png
Nuvola apps atlantik.png


AlgebraAnalysisGeometry and topologyApplied mathematics
Arithmetic symbols.svg
Source
Nuvola apps kpovmodeler.svg
Gcalctool.svg

Index of mathematics articles

ARTICLE INDEX:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z (0–9)
MATHEMATICIANS:A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Related portals

In other Wikimedia projects

The following Wikimedia Foundation sister projects provide more on this subject:

Commons
Media

Wikinews 
News

Wikiquote 
Quotations

Wikisource 
Texts

Wikiversity
Learning resources

Wiktionary 
Definitions

Wikidata 
Database

Other Languages
አማርኛ: በር:ሒሳብ
Bân-lâm-gú: Portal:Sò͘-ha̍k
беларуская (тарашкевіца)‎: Партал:Матэматыка
한국어: 포털:수학
Bahasa Indonesia: Portal:Matematika
interlingua: Portal:Mathematica
Kiswahili: Lango:Hisabati
Kreyòl ayisyen: Pòtay:matematik
македонски: Портал:Математика
Bahasa Melayu: Portal:Matematik
မြန်မာဘာသာ: Portal:သင်္ချာ
Nederlands: Portaal:Wiskunde
日本語: Portal:数学
oʻzbekcha/ўзбекча: Portal:Matematika
português: Portal:Matemática
slovenčina: Portál:Matematika
Soomaaliga: Portal:Xisaab
српски / srpski: Портал:Математика
Taqbaylit: Awwur:Tusnakt
татарча/tatarça: Портал:Математика
українська: Портал:Математика
Tiếng Việt: Chủ đề:Toán học
文言: 門:數學