Pine pollen under the microscope
A late Silurian sporangium bearing trilete spores. Such spores are the earliest evidence of life on land.[1] Green: A spore tetrad. Blue: A spore bearing a trilete mark – the Y-shaped scar. The spores are about 30–35 μm across.

Palynology is the "study of dust" (from Greek: παλύνω palunō, "strew, sprinkle"[2] and -logy) or "particles that are strewn". A classic palynologist analyses particulate samples collected from the air, from water, or from deposits including sediments of any age. The condition and identification of those particles, organic and inorganic, give the palynologist clues to the life, environment, and energetic conditions that produced them.

The term is sometimes narrowly used to refer to a subset of the discipline, which is defined as "the study of microscopic objects of macromolecular organic composition (i.e., compounds of carbon, hydrogen, nitrogen and oxygen), not capable of dissolution in hydrochloric or hydrofluoric acids".[3] It is the science that studies contemporary and fossil palynomorphs, including pollen, spores, orbicules, dinocysts, acritarchs, chitinozoans and scolecodonts, together with particulate organic matter (POM) and kerogen found in sedimentary rocks and sediments. Palynology does not include diatoms, foraminiferans or other organisms with siliceous or calcareous exoskeletons.

Palynology is an interdisciplinary science and is a branch of earth science (geology or geological science) and biological science (biology), particularly plant science (botany). Stratigraphical palynology is a branch of micropalaeontology and paleobotany, which studies fossil palynomorphs from the Precambrian to the Holocene.

A history of palynology

Pollen core sampling, Fort Bragg, North Carolina

Early history

The earliest reported observations of pollen under a microscope are likely to have been in the 1640s by the English botanist Nehemiah Grew,[4] who described pollen and the stamen, and concluded that pollen is required for sexual reproduction in flowering plants.

By the late 1870s, as optical microscopes improved and the principles of stratigraphy were worked out, Robert Kidston and P. Reinsch were able to examine the presence of fossil spores in the Devonian and Carboniferous coal seams and make comparisons between the living spores and the ancient fossil spores.[5] Early investigators include Christian Gottfried Ehrenberg (radiolarians, diatoms and dinoflagellate cysts), Gideon Mantell (desmids) and Henry Hopley White (dinoflagellate cysts).

1890s to 1940s

Quantitative analysis of pollen began with Lennart von Post's published work.[6] Although he published in the Swedish language, his methodology gained a wide audience through his lectures. In particular, his Kristiania lecture of 1916 was important in gaining a wider audience.[7] Because the early investigations were published in the Nordic languages (Scandinavian languages), the field of pollen analysis was confined to those countries.[8] The isolation ended with the German publication of Gunnar Erdtman's 1921 thesis. The methodology of pollen analysis became widespread throughout Europe and North America and revolutionized Quaternary vegetation and climate change research.[7][9]

Earlier pollen researchers include Früh (1885),[10] who enumerated many common tree pollen types, and a considerable number of spores and herb pollen grains. There is a study of pollen samples taken from sediments of Swedish lakes by Trybom (1888);[11] pine and spruce pollen was found in such profusion that he considered them to be serviceable as "index fossils". Georg F. L. Sarauw studied fossil pollen of middle Pleistocene age (Cromerian) from the harbour of Copenhagen.[12] Lagerheim (in Witte 1905) and C. A.Weber (in H. A. Weber 1918) appear to be among the first to undertake 'percentage frequency' calculations.

1940s to 1989

The term palynology was introduced by Hyde and Williams in 1944, following correspondence with the Swedish geologist Ernst Antevs, in the pages of the Pollen Analysis Circular (one of the first journals devoted to pollen analysis, produced by Paul Sears in North America). Hyde and Williams chose palynology on the basis of the Greek words paluno meaning 'to sprinkle' and pale meaning 'dust' (and thus similar to the Latin word pollen).[13]

Pollen analysis in North America stemmed from Phyllis Draper, an MS student under Sears at the University of Oklahoma. During her time as a student, she developed the first pollen diagram from a sample that depicted the percentage of several species at different depths at Curtis Bog. This was the introduction of pollen analysis in North America[14]; pollen diagrams today still often remain in the same format with depth on the y-axis and abundances of species on the x-axis.

1990s to the 21st century

Pollen analysis advanced rapidly in this period due to advances in optics and computers. Much of the science was revised by Johannes Iversen and Knut Fægri in their textbook on the subject.[15]

Other Languages
Afrikaans: Palinologie
العربية: علم الطلع
bosanski: Palinologija
català: Palinologia
čeština: Palynologie
dansk: Palynologi
Deutsch: Palynologie
Ελληνικά: Παλυνολογία
español: Palinología
Esperanto: Polenoscienco
euskara: Palinologia
français: Palynologie
한국어: 화분학
հայերեն: Պալինոլոգիա
hrvatski: Palinologija
Bahasa Indonesia: Palinologi
italiano: Palinologia
қазақша: Палинология
Latina: Palynologia
македонски: Палинологија
Nederlands: Palynologie
norsk: Palynologi
polski: Palinologia
português: Palinologia
română: Palinologie
русский: Палинология
Simple English: Palynology
slovenčina: Palynológia
српски / srpski: Палинологија
svenska: Palynologi
Tagalog: Palinolohiya
Türkçe: Palinoloji
українська: Палінологія
中文: 孢粉学