High-electron-mobility transistor

Cross section of a GaAs/AlGaAs/InGaAs pHEMT
Band diagram of GaAs/AlGaAs heterojunction-based HEMT, at equilibrium.

A High-electron-mobility transistor (HEMT), also known as heterostructure FET (HFET) or modulation-doped FET (MODFET), is a field-effect transistor incorporating a junction between two materials with different band gaps (i.e. a heterojunction) as the channel instead of a doped region (as is generally the case for MOSFET). A commonly used material combination is GaAs with AlGaAs, though there is wide variation, dependent on the application of the device. Devices incorporating more indium generally show better high-frequency performance, while in recent years, gallium nitride HEMTs have attracted attention due to their high-power performance. Like other FETs, HEMTs are used in integrated circuits as digital on-off switches. FETs can also be used as amplifiers for large amounts of current using a small voltage as a control signal. Both of these uses are made possible by the FET’s unique current-voltage characteristics. HEMT transistors are able to operate at higher frequencies than ordinary transistors, up to millimeter wave frequencies, and are used in high-frequency products such as cell phones, satellite television receivers, voltage converters, and radar equipment. They are widely used in satellite receivers, in low power amplifiers and in the defense industry.

Advantages

Advantages of HEMTs are that they have high gain, this makes them useful as amplifiers; high switching speeds, which are achieved because the main charge carriers in MODFETs are majority carriers, and minority carriers are not significantly involved; and extremely low noise values because the current variation in these devices is low compared to other FETs.