Balmer series

The "visible" hydrogen emission spectrum lines in the Balmer series. H-alpha is the red line at the right. Four lines (counting from the right) are formally in the visible range. Lines five and six can be seen with the naked eye, but are considered to be ultraviolet as they have wavelengths less than 400 nm.

The Balmer series or Balmer lines in atomic physics, is the designation of one of a set of six named series describing the spectral line emissions of the hydrogen atom. The Balmer series is calculated using the Balmer formula, an empirical equation discovered by Johann Balmer in 1885.

The visible spectrum of light from hydrogen displays four wavelengths, 410 nm, 434 nm, 486 nm, and 656 nm, that correspond to emissions of photons by electrons in excited states transitioning to the quantum level described by the principal quantum number n equals 2.[1] There are several prominent ultraviolet Balmer lines with wavelengths shorter than 400 nm. The number of these lines is an infinite continuum as it approaches a limit of 364.6 nm in the ultraviolet.

After Balmer's discovery, five other hydrogen spectral series were discovered, corresponding to electrons transitioning to values of n other than 2.

Overview

In the simplified Rutherford Bohr model of the hydrogen atom, the Balmer lines result from an electron jump between the second energy level closest to the nucleus, and those levels more distant. Shown here is a photon emission. The 3→2 transition depicted here produces H-alpha, the first line of the Balmer series. For hydrogen (Z = 1) this transition results in a photon of wavelength 656 nm (red).

The Balmer series is characterized by the electron transitioning from n ≥ 3 to n = 2, where n refers to the radial quantum number or principal quantum number of the electron. The transitions are named sequentially by Greek letter: n = 3 to n = 2 is called H-α, 4 to 2 is H-β, 5 to 2 is H-γ, and 6 to 2 is H-δ. As the first spectral lines associated with this series are located in the visible part of the electromagnetic spectrum, these lines are historically referred to as "H-alpha", "H-beta", "H-gamma" and so on, where H is the element hydrogen.

Transition of n 3→2 4→2 5→2 6→2 7→2 8→2 9→2 ∞→2
Name H-α / Ba-α H-β / Ba-β H-γ / Ba-γ H-δ / Ba-δ H-ε / Ba-ε H-ζ / Ba-ζ H-η / Ba-η Balmer break
Wavelength (nm) 656.45377[2] 486.13615[3] 434.0462[3] 410.174[4] 397.0072[4] 388.9049[4] 383.5384[4] 364.6
Energy difference (eV) 1.89 2.55 2.86 3.03 3.13 3.19 3.23 3.40
Color Red Aqua Blue Violet (Ultraviolet) (Ultraviolet) (Ultraviolet) (Ultraviolet)

Although physicists were aware of atomic emissions before 1885, they lacked a tool to accurately predict where the spectral lines should appear. The Balmer equation predicts the four visible absorption/emission lines of hydrogen with high accuracy. Balmer's equation inspired the Rydberg equation as a generalization of it, and this in turn led physicists to find the Lyman, Paschen, and Brackett series which predicted other absorption/emission lines of hydrogen found outside the visible spectrum.

The familiar red H-alpha spectral line of the Balmer series of atomic hydrogen, which is the transition from the shell n = 3 to the shell n = 2, is one of the conspicuous colours of the universe. It contributes a bright red line to the spectra of emission or ionisation nebula, like the Orion Nebula, which are often H II regions found in star forming regions. In true-colour pictures, these nebula have a distinctly pink colour from the combination of visible Balmer lines that hydrogen emits.

Later, it was discovered that when the Balmer series lines of the hydrogen spectrum were examined at very high resolution, they were closely spaced doublets. This splitting is called fine structure. It was also found that excited electrons from shells with n greater than 6 could jump to the n = 2 shell, emitting shades of ultraviolet when doing so.

Two of the Balmer lines (α and β) are clearly visible in this emission spectrum of a deuterium lamp.
Other Languages
العربية: سلسلة بالمر
čeština: Balmerova série
Deutsch: Balmer-Serie
فارسی: سری بالمر
français: Série de Balmer
한국어: 발머 계열
Bahasa Indonesia: Deret Balmer
italiano: Serie di Balmer
lietuvių: Balmerio serija
Nederlands: Balmerreeks
português: Série de Balmer
slovenčina: Balmerova séria
slovenščina: Balmerjeva serija
srpskohrvatski / српскохрватски: Balmerova serija
svenska: Balmerserien
Türkçe: Balmer serileri
українська: Серія Бальмера
中文: 巴耳末系