Μονοτονία συνάρτησης

Μαθηματικές Συναρτήσεις
Συναρτήσεις μίας μεταβλητής
Συναρτήσεις πολλών μεταβλητών
Τέσσερις περιπτώσεις συναρτήσεων όπου φαίνεται η σχέση των κατευθύνσεων των μεταβολών της ανεξάρτητης και εξαρημένης μεταβλητής, ανάλογα με τη μονοτονία.

Η μονοτονία μιας συνάρτησης αναφέρεται ποιοτικά στην κατεύθυνση της μεταβολής των τιμών της στο πεδίο ορισμού της ή σε τμήμα αυτού. Με άλλα λόγια, έστω ότι η ανεξάρτητη μεταβλητή της συνάρτησης αυξάνεται, η μονοτονία είναι η πληροφορία που αναφέρει αν η εξαρτημένη μεταβλητή αυξάνεται και αυτή ή αντίθετα μειώνεται ή μένει αμετάβλητη.

Η μονοτονία μπορεί να είναι:

  • Γνήσια αύξουσα
  • Γνήσια φθίνουσα
  • Αύξουσα
  • Φθίνουσα
  • Σταθερή

Γνήσια αύξουσα

Παράδειγμα γνήσιας αύξουσας συνάρτησης. Παρατηρήστε ότι η συνάρτηση δεν είναι παραγωγίσιμη ή συνεχής.

Όταν η τιμή της ανεξάρτητης μεταβλητής αυξάνεται, η τιμή της εξαρτημένης επίσης αυξάνεται και αντίστροφα, αν η τιμή της ανεξάρτητης μεταβλητής μειώνεται, η τιμή της εξαρτημένης επίσης μειώνεται. Γενικά, ισχύει η ισοδυναμία f(α)>f(β) <=> α>β, όπου f είναι η συνάρτηση.

άλλες γλώσσες
العربية: دالة رتيبة
azərbaycanca: Artan funksiya
Esperanto: Monotona funkcio
íslenska: Einhalla fall
日本語: 単調写像
한국어: 단조함수
Nederlands: Monotone functie
português: Função monótona
srpskohrvatski / српскохрватски: Monotonost funkcije
Simple English: Monotonic function
slovenčina: Monotónna funkcia
slovenščina: Monotonost
українська: Монотонна функція
Tiếng Việt: Hàm số đơn điệu
中文: 单调函数